对弓网故障的检测是当今列车检测的一项重要任务。原始故障视频图像具有极大的数据量,使实时存储和传输故障视频图像极其困难。由于视频的数据量相当大,需要采用先进的视频编解码协议进行处理,进而实现检测现场的实时监控。 @@ H.264/AVC(Advanced Video Coding)作为MPEG-4的第10部分,因其具有超高的压缩效率、极好的网络亲和性,而被广泛研究与应用。H.264/AVC采用了先进的算法,主要有整数变换、1/4像素精度插值、多模式帧间预测、抗块效应滤波器和熵编码等。 @@ 本文使用硬件描述语言Verilog,以红色飓风 II开发板作为硬件平台,在开发工具QUARTUSII 6.0和MODELSIM_SE 6.1B环境中完成软核的设计与仿真验证。以Altera公司的CycloneII FPGA(Field Programmable Gate Array)EP2C35F484C8作为核心芯片,实现视频图像采集、存储、显示以及实现H.264/AVC部分算法的基本系统。 @@ FPGA以其设计灵活、高速、具有丰富的布线资源等特性,逐渐成为许多系统设计的首选,尤其是与Verilog和VHDL等语言的结合,大大变革了电子系统的设计方法,加速了系统的设计进程。 @@ 本文首先分析了FPGA的特点、设计流程、verilog语言等,然后对静态图像及视频图像的编解码进行详细的分析,比如H.264/AVC中的变换、量化、熵编码等:并以JM10.2为平台,运用H.264/AVC算法对视频序列进行大量的实验,对不同分辨率、量化步长、视频序列进行编解码以及对结果进行分析。接着以红色飓风II开发板为平台,进行视频图像的采集存储、显示分析,其中详细分析了SAA7113的配置、CCD信号的A/D转换、I2C总线、视频的数字化ITU-R BT.601标准介绍及视频同步信号的获取、基于SDRAM的视频帧存储、VGA显示控制设计;最后运用verilog语言实现H.264/AVC部分算法,并进行功能仿真,得到预计的效果。 @@ 本文实现了整个视频信号的采集存储、显示流程,详细研究了H.264/AVC算法,并运用硬件语言实现了部分算法,对视频编解码芯片的设计具有一定的参考价值。 @@关键词:FPGA;H.264/AVC;视频;verilog;编解码
上传时间: 2013-04-24
上传用户:啦啦啦啦啦啦啦
自香农先生于1948年开创信息论以来,经过将近60年的发展,信道编码技术已经成为通信领域的一个重要分支,各种编码技术层出不穷。目前广泛研究的低密度奇偶校验(LDCP)码是由R.G.Gallager先生提出的一种具有逼近香农限性能的优秀纠错码,并已在数字电视、无线通信、磁盘存储等领域得到大量应用。 目前数字电视已经成为最热门的话题之一,用手机看北京奥运,已经成为每一个中国人的梦想。最近两年我国颁布了两部与数字电视有关的通信标准,分别是数字电视地面传输标准(DMB-TH)和移动多媒体(CMMB)即俗称的手机电视标准。数字电视正与每个人走得越来越近,我国预期在2015年全面实现数字电视并停止模拟电视的播出。作为数字电视标准的核心技术之一的前向纠错码技术已经成为众多科研单位的研究热点,相应的编解码芯片更成为重中之重。在DMB-TH标准中用到了LDPC码和BCH码的级联编码方式,在CMMB标准中用到了LDPC码和RS码的级联编码方式,在DVB-S2标准中用到了LDPC码和BCH码的级联编码方式。 本论文以目前最重要的三个与数字电视相关的标准:数字电视地面传输标准(DMB-TH)、手机电视标准(CMMB)以及数字卫星电视广播标准(DVB-S2)为切入点,深入研究它们的编码方式,设计了这三个标准中的LDPC码编码器,并在FPGA上实现了前两个标准的编码芯片,实现了DMB-TH标准中0.4、0.6以及0.8三种码率的复用。在研究CMMB标准中编码器设计时,提出一种改进的LU分解算法,该分解方式适合任意的H矩阵,具有一定的广泛性。测试结果表明,芯片逻辑功能完全正确,速度和资源消耗均达到了标准的要求,具有一定的商用价值。
上传时间: 2013-07-07
上传用户:327000306
可配置端口电路是FPGA芯片与外围电路连接关键的枢纽,它有诸多功能:芯片与芯片在数据上的传递(包括对输入信号的采集和输出信号输出),电压之间的转换,对外围芯片的驱动,完成对芯片的测试功能以及对芯片电路保护等。 本文采用了自顶向下和自下向上的设计方法,依据可配置端口电路能实现的功能和工作原理,运用Cadence的设计软件,结合华润上华0.5μm的工艺库,设计了一款性能、时序、功耗在整体上不亚于xilinx4006e[8]的端口电路。主要研究以下几个方面的内容: 1.基于端口电路信号寄存器的采集和输出方式,本论文设计的端口电路可以通过配置将它设置成单沿或者双沿的触发方式[7],并完成了Verilog XL和Hspiee的功能和时序仿真,且建立时间小于5ns和保持时间在0ns左右。和xilinx4006e[8]相比较满足设计的要求。 2.基于TAP Controller的工作原理及它对16种状态机转换的控制,对16种状态机的转换完成了行为级描述和实现了捕获、移位、输出、更新等主要功能仿真。 3.基于边界扫描电路是对触发器级联的构架这一特点,设计了一款边界扫描电路,并运用Verilog XL和Hspiee对它进行了功能和时序的仿真。达到对芯片电路测试设计的要求。 4.对于端口电路来讲,有时需要将从CLB中的输出数据实现异或、同或、与以及或的功能,为此本文采用二次函数输出的电路结构来实现以上的功能,并运用Verilog XL和Hspiee对它进行了功能和时序的仿真。满足设计要求。 5.对于0.5μm的工艺而言,输入端口的电压通常是3.3V和5V,为此根据设置不同的上、下MOS管尺寸来调整电路的中点电压,将端口电路设计成3.3V和5V兼容的电路,通过仿真性能上已完全达到这一要求。此外,在输入端口处加上扩散电阻R和电容C组成噪声滤波电路,这个电路能有效地抑制加到输入端上的白噪声型噪声电压[2]。 6.在噪声和延时不影响电路正常工作的范围内,具有三态控制和驱动大负载的功能。通过对管子尺寸的大小设置和驱动大小的仿真表明:在实现TTL高电平输出时,最大的驱动电流达到170mA,而对应的xilinx4006e的TTL高电平最大驱动电流为140mA[8];同样,在实现CMOS高电平最大驱动电流达到200mA,而xilinx4006e的CMOS驱动电流达到170[8]mA。 7.与xilinx4006e端口电路相比,在延时和面积以及功耗略大的情况下,本论文研究设计的端口电路增加了双沿触发、将输出数据实现二次函数的输出方式、通过添加译码器将配置端口的数目减少的新的功能,且驱动能力更加强大。
上传时间: 2013-07-20
上传用户:顶得柱
数字滤波器是现代数字信号处理系统的重要组成部分之一。ⅡR数字滤波器又是其中非常重要的一类虑波器,因其可以较低的阶次获得较高的频率选择特性而得到广泛应用。 本文研究了ⅡR数字滤波器的常用设计方法,在分析各种ⅡR实现结构的基础上,利用MATLAB针对并联型结构的ⅡR数字滤波器做了多方面的仿真,从理论分析和仿真情况确定了所要设计的ⅡR数字滤波器的实现结构以及中间数据精度。然后基于FPGA的结构特点,研究了ⅡR数字滤波器的FPGA设计与实现,提出应用流水线技术和并行处理技术相结合的方式来提高ⅡR数字滤波器处理速度的方法,同时又从ⅡR数字滤波器的结构特性出发,提出利用ⅡR数字滤波器的分解技术来改善ⅡR滤波器的设计。在ⅡR实现方面,本文采用Verilog HDL语言编写了相应的硬件实现程序,将内置SignalTap Ⅱ逻辑分析器的ⅡR设计下载到FPGA芯片,并利用Altera公司的SignalTap Ⅱ逻辑分析仪进行了定性测试,同时利用HP频谱仪进行定性与定量的观测,仿真与实验测试结果表明设计方法正确有效。
上传时间: 2013-04-24
上传用户:rockjablew
FPGA(Field Programmable Gate Arrays)是目前广泛使用的一种可编程器件,FPGA的出现使得ASIC(Application Specific Integrated Circuits)产品的上市周期大大缩短,并且节省了大量的开发成本。目前FPGA的功能越来越强大,满足了目前集成电路发展的新需求,但是其结构同益复杂,规模也越来越大,内部资源的种类也R益丰富,但同时也给测试带来了困难,FPGA的发展对测试的要求越来越高,对FPGA测试的研究也就显得异常重要。 本文的主要工作是提出一种开关盒布线资源的可测性设计,通过在FPGA内部加入一条移位寄存器链对开关盒进行配置编程,使得开关盒布线资源测试时间和测试成本减少了99%以上,而且所增加的芯片面积仅仅在5%左右,增加的逻辑资源对FPGA芯片的使用不会造成任何影响,这种方案采用了小规模电路进行了验证,取得了很好的结果,是一种可行的测试方案。 本文的另一工作是采用一种FPGA逻辑资源的测试算法对自主研发的FPGA芯片FDP250K的逻辑资源进行了严格、充分的测试,从FPGA最小的逻辑单元LC开始,首先得到一个LC的测试配置,再结合SLICE内部两个LC的连接关系得到一个SLICE逻辑单元的4种测试配置,并且采用阵列化的测试方案,同时测试芯片内部所有的逻辑单元,使得FPGA内部的逻辑资源得完全充分的测试,测试的故障覆盖率可达100%,测试配置由配套编程工具产生,测试取得了完满的结果。
上传时间: 2013-06-11
上传用户:唐僧他不信佛
码元定时恢复(位同步)技术是数字通信中的关键技术。位同步信号本身的抖动、错位会直接降低通信设备的抗干扰性能,使误码率上升,甚至会使传输遭到完全破坏。尤其对于突发传输系统,快速、精确的定时同步算法是近年来研究的一个焦点。本文就是以Inmarsat GES/AES数据接收系统为背景,研究了突发通信传输模式下的全数字接收机中位同步方法,并予以实现。 本文系统地论述了位同步原理,在此基础上着重研究了位同步的系统结构、码元定时恢复算法以及衡量系统性能的各项指标,为后续工作奠定了基础。 首先根据卫星系统突发信道传输的特点分析了传统位同步方法在突发系统中的不足,接下来对Inmarsat系统的短突发R信道和长突发T信道的调制方式和帧结构做了细致的分析,并在Agilent ADS中进行了仿真。 在此基础上提出了一种充分利用报头前导比特信息的,由滑动平均、阈值判断和累加求极值组成的快速报头时钟捕获方法,此方法可快速精准地完成短突发形式下的位同步,并在FPGA上予以实现,效果良好。 在长突发形式下的报头时钟捕获后还需要对后续数据进行位同步跟踪,在跟踪过程中本论文首先用DSP Builder实现了插值环路的位同步算法,进行了Matlab仿真和FPGA实现。并在插值环路的基础上做出改进,提出了一种新的高效的基于移位算法的位同步方案并予以FPGA实现。最后将移位算法与插值算法进行了性能比较,证明该算法更适合于本项目中Inmarsat的长突发信道位同步跟踪。 论文对两个突发信道的位同步系统进行了理论研究、算法设计以及硬件实现的全过程,满足系统要求。
上传时间: 2013-04-24
上传用户:yare
RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路、积分电路、耦合电路、滤波电路及脉冲分压器。关键词:RC电路。微分、积分电路。耦合电路。在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中,电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的不同应用,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路。
标签: RC电路
上传时间: 2013-05-27
上传用户:15953929477
为了客户能正确的使用M41T81/M41T0芯片,我们制作了该M41T81/M41T0评估板。由于M41T0的工作电压范围为2.0~5.5V,所以我们在评估板上设计了可调电源电压。客户可以调整电位器R
上传时间: 2013-05-30
上传用户:zhuoying119
数字识别系统源代码 使用说明 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-“紧缩重排”。 注意,待识别的图片要与win.dat和whi.dat位于同一目录,这两文件保存训练后网络的权值参数。
上传时间: 2013-06-25
上传用户:wzr0701
随着半导体工艺的飞速发展和芯片设计水平的不断进步,ARM微处理器的性能得到大幅度地提高,同时其芯片的价格也在不断下降,嵌入式系统以其独有的优势,己经广泛地渗透到科学研究和日常生活的各个方面。 本文以ARM7 LPC2132处理器为核心,结合盖革一弥勒计数管对Time-To-Count辐射测量方法进行研究。ARM结构是基于精简指令集计算机(RISC)原理而设计的,其指令集和相关的译码机制比复杂指令集计算机要简单得多,使用一个小的、廉价的ARM微处理器就可实现很高的指令吞吐量和实时的中断响应。基于ARM7TDMI-S核的LPC2132微处理器,其工作频率可达到60MHz,这对于Time-To-Count技术是非常有利的,而且利用LPC2132芯片的定时/计数器引脚捕获功能,可以直接读取TC中的计数值,也就是说不再需要调用中断函数读取TC值,从而大大降低了计数前杂质时间。本文是在我师兄吕军的《Time-To-Count测量方法初步研究》基础上,使用了高速的ARM芯片,对基于MCS-51的Time-To-Count辐射测量系统进行了改进,进一步论证了采用高速ARM处理器芯片可以极大的提高G-M计数器的测量范围与测量精度。 首先,讨论了传统的盖革-弥勒计数管探测射线强度的方法,并指出传统的脉冲测量方法的不足。然后讨论了什么是Time-To-Count测量方法,对Time-To-Count测量方法的理论基础进行分析。指出Time-To-Count方法与传统的脉冲计数方法的区别,以及采用Time-To-Count方法进行辐射测量的可行性。 接着,详细论述基于ARM7 LPC2132处理器的Time-To-Count辐射测量仪的原理、功能、特点以及辐射测量仪的各部分接口电路设计及相关程序的编制。 最后得出结论,通过高速32位ARM处理器的使用,Time-To-Count辐射测量仪的精度和量程均得到很大的提高,对于Y射线总量测量,使用了ARM处理器的Time-To-Count辐射测量仪的量程约为20 u R/h到1R/h,数据线性程度也比以前的Time-To-CotJnt辐射测量仪要好。所以在使用Time-To-Count方法进行的辐射测量时,如何减少杂质时间以及如何提高计数前时间的测量精度,是决定Time-To-Count辐射测量仪性能的关键因素。实验用三只相同型号的J33G-M计数管分别作为探测元件,在100U R/h到lR/h的辐射场中进行试验.每个测量点测量5次取平均,得出随着照射量率的增大,辐射强度R的测量值偏小且与辐射真实值之间的误差也随之增大。如果将测量误差限定在10%的范围内,则此仪器的量程范围为20 u R/h至1R/h,量程跨度近六个数量级。而用J33型G-M计数管作常规的脉冲测量,量程范围约为50 u R/h到5000 u R/h,充分体现了运用Time-To-Count方法测量辐射强度的优越性,也从另一个角度反应了随着计数前时间的逐渐减小,杂质时间在其中的比重越来越大,对测量结果的影响也就越来越严重,尽可能的减小杂质时间在Time-To-Count方法辐射测量特别是测量高强度辐射中是关键的。笔者用示波器测出此辐射仪器的杂质时间约为6.5 u S,所以在计算定时器值的时候减去这个杂质时间,可以增加计数前时间的精确度。通过实验得出,在标定仪器的K值时,应该在照射量率较低的条件下行,而测得的计数前时间是否精确则需要在照射量率较高的条件下通过仪器标定来检验。这是因为在照射量率较低时,计数前时间较大,杂质时间对测量结果的影响不明显,数据线斜率较稳定,适宜于确定标定系数K值,而在照射量率较高时,计数前时间很小,杂质时间对测量结果的影响较大,可以明显的在数据线上反映出来,从而可以很好的反应出仪器的性能与量程。实验证明了Time-To-Count测量方法中最为关键的环节就是如何对计数前时间进行精确测量。经过对大量实验数据的分析,得到计数前时间中的杂质时间可分为硬件杂质时间和软件杂质时间,并以软件杂质时间为主,通过对程序进行合理优化,软件杂质时间可以通过程序的改进而减少,甚至可以用数学补偿的方法来抵消,从而可以得到比较精确的计数前时间,以此得到较精确的辐射强度值。对于本辐射仪,用户可以选择不同的工作模式来进行测量,当辐射场较弱时,通常采用规定次数测量的方式,在辐射场较强时,应该选用定时测量的方式。因为,当辐射场较弱时,如果用规定次数测量的方式,会浪费很多时间来采集足够的脉冲信号。当辐射场较强时,由于辐射粒子很多,产生脉冲的频率就很高,规定次数的测量会加大测量误差,当选用定时测量的方式时,由于时间的相对加长,所以记录的粒子数就相对的增加,从而提高仪器的测量精度。通过调研国内外先进核辐射测量仪器的发展现状,了解到了目前最新的核辐射总量测量技术一Time-To-Count理论及其应用情况。论证了该新技术的理论原理,根据此原理,结合高速处理器ARM7 LPC2132,对以G-计数管为探测元件的Time-To-Count辐射测量仪进行设计。论文以实验的方法论证了Time-To-Count原理测量核辐射方法的科学性,该辐射仪的量程和精度均优于以前以脉冲计数为基础理论的MCS-51核辐射测量仪。该辐射仪具有量程宽、精度高、易操作、用户界面友好等优点。用户可以定期的对仪器的标定,来减小由于电子元件的老化对低仪器性能参数造成的影响,通过Time-To-Count测量方法的使用,可以极大拓宽G-M计数管的量程。就仪器中使用的J33型G-M计数管而言,G-M计数管厂家参考线性测量范围约为50 u R/h到5000 u R/h,而用了Time-To-Count测量方法后,结合高速微处理器ARM7 LPC2132,此核辐射测量仪的量程为20 u R/h至1R/h。在允许的误差范围内,核辐射仪的量程比以前基于MCS-51的辐射仪提高了近200倍,而且精度也比传统的脉冲计数方法要高,测量结果的线性程度也比传统的方法要好。G-M计数管的使用寿命被大大延长。 综上所述,本文取得了如下成果:对国内外Time-To-Count方法的研究现状进行分析,指出了Time-To-Count测量方法的基本原理,并对Time-T0-Count方法理论进行了分析,推导出了计数前时间和两个相邻辐射粒子时间间隔之间的关系,从数学的角度论证了Time-To-Count方法的科学性。详细说明了基于ARM 7 LPC2132的Time-To-Count辐射测量仪的硬件设计、软件编程的过程,通过高速微处理芯片LPC2132的使用,成功完成了对基于MCS-51单片机的Time-To-Count测量仪的改进。改进后的辐射仪器具有量程宽、精度高、易操作、用户界面友好等特点。本论文根据实验结果总结出了Time-To-Count技术中的几点关键因素,如:处理器的频率、计数前时间、杂质时间、采样次数和测量时间等,重点分析了杂质时间的组成以及引入杂质时间的主要因素等,对国内核辐射测量仪的研究具有一定的指导意义。
标签: TimeToCount ARM 辐射测量仪
上传时间: 2013-06-24
上传用户:pinksun9