In this project we analyze and design the minimum mean-square error (MMSE) multiuser receiver for uniformly quantized synchronous code division multiple access (CDMA) signals in additive white Gaussian noise (AWGN) channels.This project is mainly based on the representation of uniform quantizer by gain plus additive noise model. Based on this model, we derive the weight vector and the output signal-to-interference ratio (SIR) of the MMSE receiver. The effects of Quantization on the MMSE receiver performance is characterized in a single parameter named 鈥漞quivalent noise variance鈥? The optimal quantizer stepsize which maximizes the MMSE receiver output SNR is also determined.
标签: mean-square multiuser receiver project
上传时间: 2014-11-21
上传用户:ywqaxiwang
摘 要 文章以空间监控系统为背景,深入研究了JPEG图像压缩标准的实现方法,并基于FPGA对其进行了实现和优化。文中给出了详细的实现方法和优化过程,测试表明达到了很好的效果。 简单介绍了有损静态图像压缩当前有两种比较流行的标准JPEG和JPEG2000。说明了用JPEG方法压缩的原因。 介绍JPEG基本原理:JPEG对灰度图像的压缩处理过程主要包括:图像分割,离散余弦变换(DCT),量化(Quantization),“Z”形排序(Zigzag Scan),差分脉冲编码调制(Differential Pulse Code Modulation,DPCM)对直流系数(DC),行程长度编码(Run-Length Encoding,RLE)对交流系数(AC),霍夫曼(Huffman)编码等。 JPEG标准的特点是离散余弦变换。 比较详细介绍压缩系统的构成和实现。实现提及步骤, JPEG压缩模块设计和编码模块实现细节。
上传时间: 2013-12-25
上传用户:410805624
The 4.0 kbit/s speech codec described in this paper is based on a Frequency Domain Interpolative (FDI) coding technique, which belongs to the class of prototype waveform Interpolation (PWI) coding techniques. The codec also has an integrated voice activity detector (VAD) and a noise reduction capability. The input signal is subjected to LPC analysis and the prediction residual is separated into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW) components. The SEW magnitude component is quantized using a hierarchical predictive vector Quantization approach. The REW magnitude is quantized using a gain and a sub-band based shape. SEW and REW phases are derived at the decoder using a phase model, based on a transmitted measure of voice periodicity. The spectral (LSP) parameters are quantized using a combination of scalar and vector quantizers. The 4.0 kbits/s coder has an algorithmic delay of 60 ms and an estimated floating point complexity of 21.5 MIPS. The performance of this coder has been evaluated using in-house MOS tests under various conditions such as background noise. channel errors, self-tandem. and DTX mode of operation, and has been shown to be statistically equivalent to ITU-T (3.729 8 kbps codec across all conditions tested.
标签: frequency-domain interpolation performance Design kbit_s speech coder based and of
上传时间: 2018-04-08
上传用户:kilohorse
INTRODUCTION In the past, adding speech recording and playback capability to a product meant using a digital signal processor or a specialized audio chip. Now, using a simplified Adaptive Differential Pulse Code Modulation(ADPCM) algorithm, these audio capabilities can be added to any PICmicro device. This application note will cover the ADPCM compression and decompression algorithms, performance comparison of all PICmicro devices, and an application using a PIC16C72 micro-controller.DEFINITION OF TERMS step size -value of the step used for Quantization of ana-log signals and inverse Quantization of a number of steps.Quantization -the digital form of an analog input signal is represented by a finite number of steps.adaptive Quantization -the step size of a quantizer is dramatically changed with time in order to adapt to a changing input signal.inverse quantizer -a finite number of steps is converted into a digital representation of an analog signal.
上传时间: 2022-06-20
上传用户: