Avalanche photo diode (APD) receiver modules arewidely used in fi ber optic communication systems. AnAPD module contains the APD and a signal conditioningamplifi er, but is not completely self contained. It stillrequires signifi cant support circuitry including a highvoltage, low noise power supply and a precision currentmonitor to indicate the signal strength. The challenge issqueezing this support circuitry into applications withlimited board space. The LT®3482 addresses this challengeby integrating a monolithic DC/DC step-up converter andan accurate current monitor. The LT3482 can supportup to a 90V APD bias voltage, and the current monitorprovides better than 10% accuracy over four decades ofdynamic range (250nA to 2.5mA).
上传时间: 2014-01-18
上传用户:wenyuoo
Automotive power systems are unforgiving electronicenvironments. Transients to 90V can occur when thenominal voltage range is 10V to 15V (ISO7637), along withbattery reversal in some cases. It’s fairly straightforwardto build automotive electronics around this system, butincreasingly end users want to operate portable electronics,such as GPS systems or music/video players,and to charge their Li-Ion batteries from the automotivebattery. To do so requires a compact, robust, effi cientand easy-to-design charging system
上传时间: 2013-11-04
上传用户:wfl_yy
Advances in low Power electronics now allow placementof battery-powered sensors and other devices in locationsfar from the power grid. Ideally, for true grid independence,the batteries should not need replacement, but instead berecharged using locally available renewable energy, suchas solar power. This Design Note shows how to producea compact battery charger that operates from a small2-cell solar panel. A unique feature of this design is thatthe DC/DC converter uses power point control to extractmaximum power from the solar panel.
上传时间: 2014-01-20
上传用户:wettetw
Many system designers need an easy way to producea negative 3.3V power supply. In systems that alreadyhave a transformer, one option is to swap out the existingtransformer with one that has an additional secondarywinding. The problem with this solution is that manysystems now use transformers that are standard, offthe-shelf components, and most designers want toavoid replacing a standard, qualifi ed transformer with acustom version. An easier alternative is to produce thelow negative voltage rail by stepping down an existingnegative rail. For example, if the system already employsan off-the-shelf transformer with two secondary windingsto produce ±12V, and a –3.3V rail is needed, a negativebuck converter can produce the –3.3V output from the–12V rail.
上传时间: 2013-10-09
上传用户:Jerry_Chow
The LTC3546 is a dual output current mode buck regulatorwith fl exible output current partitioning. Beyondthe advantages normally associated with dual outputregulators (reduced size, cost, EMI and part count, withimproved effi ciency), the LTC3546’s outputs can bepartitioned for either 3A and 1A outputs, or two 2A outputs.This increases its application range and simplifi esmultiple supply rail designs. A confi gurable Burst Mode®clamp for each output sets the current transition levelbetween Burst Mode operation and forced continuousconduction mode to optimize effi ciency over the entireoutput range. An adjustable switching frequency up to4MHz and internal power MOSFET switches allow forsmall and compact footprints.
上传时间: 2013-11-04
上传用户:yxgi5
Linear Technology’s DC/DC step-down μModule®regulators are complete switchmode power supplies in asurface-mount package. They include the DC/DC controller,inductor, power switches and supporting circuitry.These highly integrated regulators also provide an easysolution for applications that require negative outputvoltages. In other words, these products can operate asinverting buck-boost regulators. As a result, the lowestpotential in the circuit is not the standard 0V, but –VOUT,which must be tied to the μModule regulator’s GND. Allsignals are now referred to –VOUT.
上传时间: 2013-10-22
上传用户:ztj182002
The LTC®3610 is a high power monolithic synchronousstep-down DC/DC regulator that can deliver up to 12Aof continuous output current from a 4V to 24V (28Vmaximum) input supply. It is a member of a high currentmonolithic regulator family (see Table 1) that featuresintegrated low RDS(ON) N-channel top and bottomMOSFETs. This results in a high effi ciency and highpower density solution with few external components.This regulator family uses a constant on-time valleycurrent mode architecture that is capable of operatingat very low duty cycles at high frequency and with veryfast transient response. All are available in low profi le(0.9mm max) QFN packages.
上传时间: 2013-11-07
上传用户:moerwang
The LTC®4151 is a high side power monitor that includesa 12-bit ADC for measuring current and voltage, as wellas the voltage on an auxiliary input. Data is read throughthe widely used I2C interface. An unusual feature in thisdevice is its 7V to 80V operating range, allowing it to coverapplications from 12V automotive to 48V telecom.
上传时间: 2013-10-29
上传用户:集美慧
As environmental concerns over traditional lighting increaseand the price of LEDs decreases, high power LEDsare fast becoming a popular lighting solution for offl ineapplications. In order to meet the requirements of offl inelighting—such as high power factor, high effi ciency, isolationand TRIAC dimmer compatibility—prior LED driversused many external discrete components, resulting incumbersome solutions. The LT®3799 solves complexity,space and performance problems by integrating all therequired functions for offl ine LED lighting.
上传时间: 2013-10-13
上传用户:dongqiangqiang
The LTC®4155 and LTC4156 are dual multiplexed-inputbattery chargers with PowerPath™ control, featuring I2Cprogrammability and USB On-The-Go for systems suchas tablet PCs and other high power density applications.The LTC4155’s float voltage (VFLOAT) range is optimizedfor Li-Ion batteries, while the LTC4156 is optimized forlithium iron phosphate (LiFePO4)batteries, supportingsystem loads to 4A with up to 3.5A of battery chargecurrent. I2C controls a broad range of functions and USBOn-The-Go functionality is controlled directly from theUSB connector ID pin.
上传时间: 2013-10-09
上传用户:hanhanj