虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

O<b>db</b>C

  • TLC2543 中文资料

    TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明    TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double  sum_final1; double  sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe};  void delay(unsigned char b)   //50us {           unsigned char a;           for(;b>0;b--)                     for(a=22;a>0;a--); }  void display(uchar a,uchar b,uchar c,uchar d) {    P0=duan[a]|0x80;    P2=wei[0];    delay(5);    P2=0xff;    P0=duan[b];    P2=wei[1];    delay(5);   P2=0xff;   P0=duan[c];   P2=wei[2];   delay(5);   P2=0xff;   P0=duan[d];   P2=wei[3];   delay(5);   P2=0xff;   } uint read(uchar port) {   uchar  i,al=0,ah=0;   unsigned long ad;   clock=0;   _cs=0;   port<<=4;   for(i=0;i<4;i++)  {    d_in=port&0x80;    clock=1;    clock=0;    port<<=1;  }   d_in=0;   for(i=0;i<8;i++)  {    clock=1;    clock=0;  }   _cs=1;   delay(5);   _cs=0;   for(i=0;i<4;i++)  {    clock=1;    ah<<=1;    if(d_out)ah|=0x01;    clock=0; }   for(i=0;i<8;i++)  {    clock=1;    al<<=1;    if(d_out) al|=0x01;    clock=0;  }   _cs=1;   ad=(uint)ah;   ad<<=8;   ad|=al;   return(ad); }  void main()  {   uchar j;   sum=0;sum1=0;   sum_final=0;   sum_final1=0;    while(1)  {              for(j=0;j<128;j++)          {             sum1+=read(1);             display(a1,b1,c1,d1);           }            sum=sum1/128;            sum1=0;            sum_final1=(sum/4095)*5;            sum_final=sum_final1*1000;            a1=(int)sum_final/1000;            b1=(int)sum_final%1000/100;            c1=(int)sum_final%1000%100/10;            d1=(int)sum_final%10;            display(a1,b1,c1,d1);           }         } 

    标签: 2543 TLC

    上传时间: 2013-11-19

    上传用户:shen1230

  • DESCRIPTION : BIN to seven segments converter -- segment encoding -- a -- +---+ -- f | | b --

    DESCRIPTION : BIN to seven segments converter -- segment encoding -- a -- +---+ -- f | | b -- +---+ <- g -- e | | c -- +---+ -- d -- Enable (EN) active : high -- Outputs (data_out) active : low

    标签: DESCRIPTION converter segments encoding

    上传时间: 2016-08-17

    上传用户:ainimao

  • linux 中断和设备驱动

    linux 中断和设备驱动 本章介绍L i n u x内核是如何维护它支持的文件系统中的文件的,我们先介绍 V F S ( Vi r t u a lFile System,虚拟文件系统),再解释一下L i n u x内核的真实文件系统是如何得到支持的。L i n u x的一个最重要特点就是它支持许多不同的文件系统。这使 L i n u x非常灵活,能够与许多其他的操作系统共存。在写这本书的时候, L i n u x共支持1 5种文件系统: e x t、 e x t 2、x i a、 m i n i x、 u m s d o s、 msdos 、v f a t、 p r o c、 s m b、 n c p、 i s o 9 6 6 0、 s y s v、 h p f s、 a ffs 和u f s。无疑随着时间的推移,L i n u x支持的文件系统数还会增加。

    标签: linux 中断 设备驱动

    上传时间: 2013-11-13

    上传用户:zxh122

  • EZ-USB FX系列单片机USB外围设备设计与应用

    EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式

    标签: EZ-USB USB 单片机 外围设备

    上传时间: 2013-11-21

    上传用户:努力努力再努力

  • 波形发生器,含原理图+电路图+源程序

    含原理图+电路图+程序的波形发生器:在工作中,我们常常会用到波形发生器,它是使用频度很高的电子仪器。现在的波形发生器都采用单片机来构成。单片机波形发生器是以单片机核心,配相应的外围电路和功能软件,能实现各种波形发生的应用系统,它由硬件部分和软件部分组成,硬件是系统的基础,软件则是在硬件的基础上,对其合理的调配和使用,从而完成波形发生的任务。 波形发生器的技术指标:(1) 波形类型:方型、正弦波、三角波、锯齿波;(2) 幅值电压:1V、2V、3V、4V、5V;(3) 频率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 输出极性:双极性操作设计1、 机器通电后,系统进行初始化,LED在面板上显示6个0,表示系统处于初始状态,等待用户输入设置命令,此时,无任何波形信号输出。2、 用户按下“F”、“V”、“W”,可以分别进入频率,幅值波形设置,使系统进入设置状态,相应的数码管显示“一”,此时,按其它键,无效;3、 在进入某一设置状态后,输入0~9等数字键,(数字键仅在设置状态时,有效)为欲输出的波形设置相应参数,LED将参数显示在面板上;4、 如果在设置中,要改变已设定的参数,可按下“CL”键,清除所有已设定参数,系统恢复初始状态,LED显示6个0,等待重新输入命令;5、 当必要的参数设定完毕后,所有参数显示于LED上,用户按下“EN”键,系统会将各波形参数传递到波形产生模块中,以便控制波形发生,实现不同频率,不同电压幅值,不同类型波形的输出;6、 用户按下“EN”键后,波形发生器开始输出满足参数的波形信号,面板上相应类型的运行指示灯闪烁,表示波形正在输出,LED显示波形类型编号,频率值、电压幅值等波形参数;7、 波形发生器在输出信号时,按下任意一个键,就停止波形信号输出,等待重新设置参数,设置过程如上所述,如果不改变参数,可按下“EN”键,继续输出原波形信号;8、 要停止波形发生器的使用,可按下复位按钮,将系统复位,然后关闭电源。硬件组成部分通过综合比较,决定选用获得广泛应用,性能价格高的常用芯片来构成硬件电路。单片机采用MCS-51系列的89C51(一块),74LS244和74LS373(各一块),反相驱动器 ULN2803A(一块),运算放大器 LM324(一块)  波形发生器的硬件电路由单片机、键盘显示器接口电路、波形转换(D/ A)电路和电源线路等四部分构成。1.单片机电路功能:形成扫描码,键值识别,键功能处理,完成参数设置;形成显示段码,向LED显示接口电路输出;产生定时中断;形成波形的数字编码,并输出到D/A接口电路;如电路原理图所示: 89C51的P0口和P2口作为扩展I/O口,与8255、0832、74LS373相连接,可寻址片外的寄存器。单片机寻址外设,采用存储器映像方式,外部接口芯片与内部存储器统一编址,89C51提供16根地址线P0(分时复用)和P2,P2口提供高8位地址线,P0口提供低8位地址线。P0口同时还要负责与8255,0832的数据传递。P2.7是8255的片选信号,P2.6是0832(1)的片选,P2.5是0832(2)的片选,低电平有效,P0.0、P0.1经过74LS373锁存后,送到8255的A1、A2作,片内A口,B口,C口,控制口等寄存器的字选。89C51的P1口的低4位连接4只发光三极管,作为波形类型指示灯,表示正在输出的波形是什么类型。单片机89C51内部有两个定时器/计数器,在波形发生器中使用T0作为中断源。不同的频率值对应不同的定时初值,定时器的溢出信号作为中断请求。控制定时器中断的特殊功能寄存器设置如下:定时控制寄存器TCON=(00010000)工作方式选择寄存器(TMOD)=(00000000)中断允许控制寄存器(IE)=(10000010)2、键盘显示器接口电路功能:驱动6位数码管动态显示;           提供响应界面;           扫面键盘;           提供输入按键。由并口芯片8255,锁存器74LS273,74LS244,反向驱动器ULN2803A,6位共阴极数码管(LED)和4×4行列式键盘组成。8255的C口作为键盘的I/O接口,C口的低4位输出到扫描码,高4位作为输入行状态,按键的分布如图所示。8255的A口作为LED段码输出口,与74LS244相连接,B口作为LED的位选信号输出口,与ULN2803A相连接。8255内部的4个寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH ,  C口:7FFEH    3、D/A电路功能:将波形样值的数字编码转换成模拟值;完成单极性向双极性的波形输出;构成由两片0832和一块LM324运放组成。0832(1)是参考电压提供者,单片机向0832(1)内的锁存器送数字编码,不同的编码会产生不同的输出值,在本发生器中,可输出1V、2V、3V、4V、5V等五个模拟值,这些值作为0832(2)的参考电压,使0832(2)输出波形信号时,其幅度是可调的。0832(2)用于产生各种波形信号,单片机在波形产生程序的控制下,生成波形样值编码,并送到0832(2)中的锁存器,经过D/A转换,得到波形的模拟样值点,假如N个点就构成波形的一个周期,那么0832(2)输出N个样值点后,样值点形成运动轨迹,就是波形信号的一个周期。重复输出N个点后,由此成第二个周期,第三个周期……。这样0832(2)就能连续的输出周期变化的波形信号。运放A1是直流放大器,运放A2是单极性电压放大器,运放A3是双极性驱动放大器,使波形信号能带得起负载。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、电源电路:功能:为波形发生器提供直流能量;构成由变压器、整流硅堆,稳压块7805组成。220V的交流电,经过开关,保险管(1.5A/250V),到变压器降压,由220V降为10V,通过硅堆将交流电变成直流电,对于谐波,用4700μF的电解电容给予滤除。为保证直流电压稳定,使用7805进行稳压。最后,+5V电源配送到各用电负载。

    标签: 波形发生器 原理图 电路图 源程序

    上传时间: 2013-11-08

    上传用户:685

  • 并行接口

    7.1 并行接口概述并行接口和串行接口的结构示意图并行接口传输速率高,一般不要求固定格式,但不适合长距离数据传输7.2 可编程并行接口芯片82C55     7.2.1  8255的基本功能 8255具有2个独立的8位I/O口(A口和B口)和2个独立的4位I/O(C口上半部和C口下半部),提供TTL兼容的并行接口。作为输入时提供三态缓冲器功能,作为输出时提供数据锁存功能。其中,A口具有双向传输功能。8255有3种工作方式,方式0、方式1和方式2,能使用无条件、查询和中断等多种数据传送方式完成CPU与I/O设备之间的数据交换。B口和C口的引脚具有达林顿复合晶体管驱动能力,在1.5V时输出1mA电流,适于作输出端口。C口除用做数据口外,当8255工作在方式1和方式2时,C口的部分引脚作为固定的联络信号线。

    标签: 并行接口

    上传时间: 2013-10-25

    上传用户:oooool

  • 8255A可编程并行接口

    并行接口电路:微处理器与I/O设备进行数据传输时均需经过接口电路实现系统与设备互连的匹配。并行接口电路中每个信息位有自己的传输线,一个数据字节各位可并行传送,速度快,控制简单。由于电气特性的限制,传输距离不能太长。8255A是通用的可编程并行接口芯片,功能强,使用灵活。适合一些并行输入/输出设备的使用。8255A并行接口逻辑框图三个独立的8位I/O端口,口A、口B、口C。口A有输入、输出锁存器及输出缓冲器。口B与口C有输入、输出缓冲器及输出锁存器。在实现高级的传输协议时,口C的8条线分为两组,每组4条线,分别作为口A与口B在传输时的控制信号线。口C的8条线可独立进行置1/置0的操作。口A、口B、口C及控制字口共占4个设备号。8255A并行接口的控制字工作模式选择控制字:口A有三种工作模式,口B有二种工作模式。口C独立使用时只有一个工作模式,与口A、口B配合使用时,作为控制信号线。三种工作模式命名为:模式0、模式1及模式2。模式 0 为基本I/O端口,模式1为带选通的I/O端口,模式 2 为带选通的双向I/O端口。口A可工作在三种模式下,口B可工作在模式 0与模式 1下,口C可工作在模式0下或作为控制线配合口A、口B工作。

    标签: 8255A 可编程 并行接口

    上传时间: 2013-11-07

    上传用户:xitai

  • 微机接口技术试题

    微机接口技术试题:《微机接口技术》模拟试题  一、 选择题:(每空1分,共20分)1. CPU与外设之间交换数据常采用        、       、       和        四种方式,PC机键盘接口采用      传送方式。 ⒉ 当进行DMA方式下的写操作时,数据是从       传送到       __中。 ⒊ PC总线、ISA总线和EISA总线的地址线分别为:     、     和     根。 ⒋ 8254定时/计数器内部有     个端口、共有     种工作方式。 ⒌8255的A1和A0引脚分别连接在地址总线的A1和A0,当命令端口的口地址为317H时,则A口、B口、C口的口地址分别为     、     、      。 ⒍ PC微机中最大的中断号是       、最小的中断号是       。 ⒎PC微机中键盘是从8255的       口得到按键数据。 ⒏ 串行通信中传输线上即传输_________,又传输_________。 二、选择题:(每题2分,共10分)⒈ 设串行异步通信每帧数据格式有8个数据位、无校验、一个停止位,若波特率为9600B/S,该方式每秒最多能传送(    )个字符。  ①  1200     ②  150 ③  960          ④  120 2.输出指令在I/O接口总线上产生正确的命令顺序是(    )。① 先发地址码,再发读命令,最后读数据。② 先发读命令、再发地址码,最后读数据。③ 先送地址码,再送数据,最后发写命令。④ 先送地址码,再发写命令、最后送数据。3 使用8254设计定时器,当输入频率为1MHZ并输出频率为100HZ时,该定时器的计数初值为(      )。 ① 100   ② 1000 ③ 10000 ④ 其它 4 在PC机中5号中断,它的中断向地址是(     )。 ① 0000H:0005H   ② 0000H:0010H ③ 0000H:0014H        ④ 0000H:0020H 5. 四片8259级联时可提供的中断请求总数为(      )。 ① 29个  ② 30个  ③ 31个    ④ 32个 6. 下述总线中,组内都是外设串行总线为(   )组。① RS-485、IDE、ISA。② RS-485、IEEE1394、USB。③ RS-485、PCI、IEEE1394。④ USB、SCSI、RS-232。 7. DMA在(  )接管总线的控制权。① 申请阶段  ② 响应阶段 ③ 数据传送阶段   ④ 结束阶段 8. 中断服务程序入口地址是(  )。 ① 中断向量表的指针 ② 中断向量 ③ 中断向量表  ④ 中断号

    标签: 微机 接口技术 试题

    上传时间: 2013-11-16

    上传用户:xiaoxiang

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-11-06

    上传用户:smallfish

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-10-13

    上传用户:lml1234lml