虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

N-<b>rsM</b>

  • 一:需求分析 1. 问题描述 魔王总是使用自己的一种非常精练而抽象的语言讲话,没人能听懂,但他的语言是可逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: -

    一:需求分析 1. 问题描述 魔王总是使用自己的一种非常精练而抽象的语言讲话,没人能听懂,但他的语言是可逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: ----------------------------------------------------------- (1) a---> (B1)(B2)....(Bm) (2)[(op1)(p2)...(pn)]---->[o(pn)][o(p(n-1))].....[o(p1)o] ----------------------------------------------------------- 在这两种形式中,从左到右均表示解释.试写一个魔王语言的解释系统,把 他的话解释成人能听得懂的话. 2. 基本要求: 用下述两条具体规则和上述规则形式(2)实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言的词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (1) B --> tAdA (2) A --> sae 3. 测试数据: B(ehnxgz)B 解释成 tsaedsaeezegexenehetsaedsae若将小写字母与汉字建立下表所示的对应关系,则魔王说的话是:"天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅". | t | d | s | a | e | z | g | x | n | h | | 天 | 地 | 上 | 一只| 鹅 | 追 | 赶 | 下 | 蛋 | 恨 |

    标签: 语言 抽象

    上传时间: 2014-12-02

    上传用户:jkhjkh1982

  • 汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation

    汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C

    标签: the animation Simulate movement

    上传时间: 2017-02-11

    上传用户:waizhang

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • 复活节计算器

    复活节计算 int y, n, a, q, b, m, w, d, mm = 4; y = atoi(argv[1]); n = y-1900;  a = fmod(n,19); 

    标签: 计算器 C语言

    上传时间: 2021-07-09

    上传用户:scfan2004

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625

  • 微电脑型数学演算式双输出隔离传送器

    特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)

    标签: 微电脑 数学演算 输出 隔离传送器

    上传时间: 2013-11-24

    上传用户:541657925

  • 80C51特殊功能寄存器地址表

    /*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0;             //累加器 sfr B = 0xF0;  //B 寄存器 sfr PSW    = 0xD0;           //程序状态字寄存器 sbit CY    = PSW^7;       //进位标志位 sbit AC    = PSW^6;        //辅助进位标志位 sbit F0    = PSW^5;        //用户标志位0 sbit RS1   = PSW^4;        //工作寄存器组选择控制位 sbit RS0   = PSW^3;        //工作寄存器组选择控制位 sbit OV    = PSW^2;        //溢出标志位 sbit F1    = PSW^1;        //用户标志位1 sbit P     = PSW^0;        //奇偶标志位 sfr SP    = 0x81;            //堆栈指针寄存器 sfr DPL  = 0x82;            //数据指针0低字节 sfr DPH  = 0x83;            //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON  = 0x87;           //电源控制寄存器 sfr AUXR = 0x8E;              //辅助寄存器 sfr AUXR1 = 0xA2;             //辅助寄存器1 sfr WAKE_CLKO = 0x8F;        //时钟输出和唤醒控制寄存器 sfr CLK_DIV  = 0x97;          //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1;        //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE     = 0xA8;           //中断允许寄存器 sbit EA    = IE^7;  //总中断允许位  sbit ELVD  = IE^6;           //低电压检测中断控制位 8051

    标签: 80C51 特殊功能寄存器 地址

    上传时间: 2013-10-30

    上传用户:yxgi5

  • AVR单片机数码管秒表显示

    #include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,

    标签: AVR 单片机 数码管

    上传时间: 2013-10-21

    上传用户:13788529953

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-11-06

    上传用户:smallfish