Computational models are commonly used in engineering design and scientific discovery activities for simulating complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop an understanding and/or predictive capability for complex behaviors typically observed in the corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system parameters, such as size or location dimensions and material properties, are adjusted to improve the performance of a system, as defined by one or more system performance objectives. Such optimization or tuning of the virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling methods are often used in uncertainty quantification to calculate a distribution on system performance measures, and to understand which uncertain inputs contribute most to the variance of the outputs. A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulationbased models. These capabilities generally lead to improved designs and system performance in earlier design stages, alleviating dependence on physical prototypes and testing, shortening design cycles, and reducing product development costs. In addition to providing this practical environment for answering system performance questions, the Dakota toolkit provides an extensible platform for the research and rapid prototyping of customized methods and meta-algorithms
标签: Optimization and Uncertainty Quantification
上传时间: 2016-04-08
上传用户:huhu123456
The TAS3204 is a highly-integrated audio system-on-chip (SOC) consisting of a fully-programmable, 48-bit digital audio processor, a 3:1 stereo analog input MUX, four ADCs, four DACs, and other analog functionality. The TAS3204 is programmable with the graphical PurePath Studio™ suite of DSP code development software. PurePath Studio is a highly intuitive, drag-and-drop environment that minimizes software development effort while allowing the end user to utilize the power and flexibility of the TAS3204’s digital audio processing core. TAS3204 processing capability includes speaker equalization and crossover, volume/bass/treble control, signal mixing/MUXing/splitting, delay compensation, dynamic range compression, and many other basic audio functions. Audio functions such as matrix decoding, stereo widening, surround sound virtualization and psychoacoustic bass boost are also available with either third-party or TI royalty-free algorithms. The TAS3204 contains a custom-designed, fully-programmable 135-MHz, 48-bit digital audio processor. A 76-bit accumulator ensures that the high precision necessary for quality digital audio is maintained during arithmetic operations. Four differential 102 dB DNR ADCs and four differential 105 dB DNR DACs ensure that high quality audio is maintained through the whole signal chain as well as increasing robustness against noise sources such as TDMA interference. The TAS3204 is composed of eight functional blocks: Clocking System Digital Audio Interface Analog Audio Interface Power supply Clocks, digital PLL I2C control interface 8051 MCUcontroller Audio DSP – digital audio processing 特性 Digital Audio Processor Fully Programmable With the Graphical, Drag-and-Drop PurePath Studio™ Software Development Environment 135-MHz Operation 48-Bit Data Path With 76-Bit Accumulator Hardware Single-Cycle Multiplier (28 × 48)
上传时间: 2016-05-06
上传用户:fagong
This report presents a tutorial of fundamental array processing and beamforming theory relevant to microphone array speech processing. A microphone array consists of multiple microphones placed at different spatial locations. Built upon a knowledge of sound propagation principles, the multiple inputs can be manipulated to enhance or attenuate signals emanating from particular directions. In this way, microphone arrays provide a means of enhancing a desired signal in the presence of corrupting noise sources. Moreover, this enhancement is based purely on knowledge of the source location, and so microphone array techniques are applicable to a wide variety of noise types. Microphone arrays have great potential in practical applications of speech processing, due to their ability to provide both noise robustness and hands-free signal acquisition.
标签: Microphone array Tutorial Array Signal Processing
上传时间: 2016-06-12
上传用户:halias
evolution computing 现在最火的一篇论文 Handling Multiple Objectives With Particle Swarm Optimization
上传时间: 2016-07-01
上传用户:白水煮瓜子
msp430The LDC1312 and LDC1314 are 2- and 4-channel, 1• Easy-to-use – minimal configuration required 12-bit inductance to digital converters (LDCs) for • Measure up to 4 sensors with one IC inductive sensing solutions. With multiple channels • Multiple channels support environmental and and support for remote sensing, the LDC1312 and aging compensation LDC1314 enable the performance and reliability benefits of inductive sensing to be realized at minimal• Multi-channel remote sensing provides lowest cost and power. The products are easy to use, onlysystem cost requiring that the sensor frequency be within 1 kHz • Pin-compatible medium and high-resolution and 10 MHz to begin sensing. The wide 1 kHz to 10 options MHz sensor frequency range also enables use of very small PCB coils, further reducing sensing– LDC1312/4: 2/4-ch 12-bit LDC solution cost and size.– LDC1612/4: 2/4-ch 28
上传时间: 2016-07-22
上传用户:tongmoonsky
V1.16 Win32 July 2012 - Ported to Win32 C++ - Allow multiple instances of libnids to coexist in the same process - Incorporate unofficial patch to track established TCP connections - Migration of calls to secure versions (i.e. strcpy to strcpy_s) - Compiles under Visual Studio 2010 with no warnings at W4 - Linux support well and truly broken, Linux specific code removed
标签: libnids-Win32
上传时间: 2016-07-30
上传用户:mxgg126
HTML5 从入门到精通主要讲述HTML5 视频、音乐、canvas、veb存储、input类型等。
标签: HTML5
上传时间: 2016-10-24
上传用户:nhwswjsd
We consider the problem of target localization by a network of passive sensors. When an unknown target emits an acoustic or a radio signal, its position can be localized with multiple sensors using the time difference of arrival (TDOA) information. In this paper, we consider the maximum likelihood formulation of this target localization problem and provide efficient convex relaxations for this nonconvex optimization problem.We also propose a formulation for robust target localization in the presence of sensor location errors. Two Cramer-Rao bounds are derived corresponding to situations with and without sensor node location errors. Simulation results confirm the efficiency and superior performance of the convex relaxation approach as compared to the existing least squares based approach when large sensor node location errors are present.
标签: 传感器网络
上传时间: 2016-11-27
上传用户:xxmluo
#include <malloc.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #define NULL 0 #define MaxSize 30 typedef struct athletestruct /*运动员*/ { char name[20]; int score; /*分数*/ int range; /**/ int item; /*项目*/ }ATH; typedef struct schoolstruct /*学校*/ { int count; /*编号*/ int serial; /**/ int menscore; /*男选手分数*/ int womenscore; /*女选手分数*/ int totalscore; /*总分*/ ATH athlete[MaxSize]; /**/ struct schoolstruct *next; }SCH; int nsc,msp,wsp; int ntsp; int i,j; int overgame; int serial,range; int n; SCH *head,*pfirst,*psecond; int *phead=NULL,*pafirst=NULL,*pasecond=NULL; void create(); void input () { char answer; head = (SCH *)malloc(sizeof(SCH)); /**/ head->next = NULL; pfirst = head; answer = 'y'; while ( answer == 'y' ) { Is_Game_DoMain: printf("\nGET Top 5 when odd\nGET Top 3 when even"); printf("\n输入运动项目序号 (x<=%d):",ntsp); scanf("%d",pafirst); overgame = *pafirst; if ( pafirst != phead ) { for ( pasecond = phead ; pasecond < pafirst ; pasecond ++ ) { if ( overgame == *pasecond ) { printf("\n这个项目已经存在请选择其他的数字\n"); goto Is_Game_DoMain; } } } pafirst = pafirst + 1; if ( overgame > ntsp ) { printf("\n项目不存在"); printf("\n请重新输入"); goto Is_Game_DoMain; } switch ( overgame%2 ) { case 0: n = 3;break; case 1: n = 5;break; } for ( i = 1 ; i <= n ; i++ ) { Is_Serial_DoMain: printf("\n输入序号 of the NO.%d (0<x<=%d): ",i,nsc); scanf("%d",&serial); if ( serial > nsc ) { printf("\n超过学校数目,请重新输入"); goto Is_Serial_DoMain; } if ( head->next == NULL ) { create(); } psecond = head->next ; while ( psecond != NULL ) { if ( psecond->serial == serial ) { pfirst = psecond; pfirst->count = pfirst->count + 1; goto Store_Data; } else { psecond = psecond->next; } } create(); Store_Data: pfirst->athlete[pfirst->count].item = overgame; pfirst->athlete[pfirst->count].range = i; pfirst->serial = serial; printf("Input name:) : "); scanf("%s",pfirst->athlete[pfirst->count].name); } printf("\n继续输入运动项目(y&n)?"); answer = getchar(); printf("\n"); } } void calculate() /**/ { pfirst = head->next; while ( pfirst->next != NULL ) { for (i=1;i<=pfirst->count;i++) { if ( pfirst->athlete[i].item % 2 == 0 ) { switch (pfirst->athlete[i].range) { case 1:pfirst->athlete[i].score = 5;break; case 2:pfirst->athlete[i].score = 3;break; case 3:pfirst->athlete[i].score = 2;break; } } else { switch (pfirst->athlete[i].range) { case 1:pfirst->athlete[i].score = 7;break; case 2:pfirst->athlete[i].score = 5;break; case 3:pfirst->athlete[i].score = 3;break; case 4:pfirst->athlete[i].score = 2;break; case 5:pfirst->athlete[i].score = 1;break; } } if ( pfirst->athlete[i].item <=msp ) { pfirst->menscore = pfirst->menscore + pfirst->athlete[i].score; } else { pfirst->womenscore = pfirst->womenscore + pfirst->athlete[i].score; } } pfirst->totalscore = pfirst->menscore + pfirst->womenscore; pfirst = pfirst->next; } } void output() { pfirst = head->next; psecond = head->next; while ( pfirst->next != NULL ) { // clrscr(); printf("\n第%d号学校的结果成绩:",pfirst->serial); printf("\n\n项目的数目\t学校的名字\t分数"); for (i=1;i<=ntsp;i++) { for (j=1;j<=pfirst->count;j++) { if ( pfirst->athlete[j].item == i ) { printf("\n %d\t\t\t\t\t\t%s\n %d",i,pfirst->athlete[j].name,pfirst->athlete[j].score);break; } } } printf("\n\n\n\t\t\t\t\t\t按任意建 进入下一页"); getchar(); pfirst = pfirst->next; } // clrscr(); printf("\n运动会结果:\n\n学校编号\t男运动员成绩\t女运动员成绩\t总分"); pfirst = head->next; while ( pfirst->next != NULL ) { printf("\n %d\t\t %d\t\t %d\t\t %d",pfirst->serial,pfirst->menscore,pfirst->womenscore,pfirst->totalscore); pfirst = pfirst->next; } printf("\n\n\n\t\t\t\t\t\t\t按任意建结束"); getchar(); } void create() { pfirst = (struct schoolstruct *)malloc(sizeof(struct schoolstruct)); pfirst->next = head->next ; head->next = pfirst ; pfirst->count = 1; pfirst->menscore = 0; pfirst->womenscore = 0; pfirst->totalscore = 0; } void Save() {FILE *fp; if((fp = fopen("school.dat","wb"))==NULL) {printf("can't open school.dat\n"); fclose(fp); return; } fwrite(pfirst,sizeof(SCH),10,fp); fclose(fp); printf("文件已经成功保存\n"); } void main() { system("cls"); printf("\n\t\t\t 运动会分数统计\n"); printf("输入学校数目 (x>= 5):"); scanf("%d",&nsc); printf("输入男选手的项目(x<=20):"); scanf("%d",&msp); printf("输入女选手项目(<=20):"); scanf("%d",&wsp); ntsp = msp + wsp; phead = (int *)calloc(ntsp,sizeof(int)); pafirst = phead; pasecond = phead; input(); calculate(); output(); Save(); }
标签: 源代码
上传时间: 2016-12-28
上传用户:150501
The AP2406 is a 1.5Mhz constant frequency, slope compensated current mode PWM step-down converter. The device integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. It is ideal for powering portable equipment that runs from a single cell lithium-Ion (Li+) battery. The AP2406 can supply 600mA of load current from a 2.5V to 5.5V input voltage. The output voltage can be regulated as low as 0.6V. The AP2406 can also run at 100% duty cycle for low dropout operation, extending battery life in portable system. Idle mode operation at light loads provides very low output ripple voltage for noise sensitive applications. The AP2406 is offered in a low profile (1mm) 5-pin, thin SOT package, and is available in an adjustable version and fixed output voltage of 1.2V, 1.5V and 1.8V
上传时间: 2017-02-23
上传用户:w124141