人工神经网络应用领域十分广泛,压缩包内是有关神经网络的介绍,特别介绍了其在气象领域中的应用实例
上传时间: 2017-01-26
上传用户:kytqcool
人工神经网络(Aartificial Neural Network,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家Warren S.Mcculloch和数学家Walth H.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,Back Propagation),它的网络结构及算法直观、简单,在工业领域中应用较多。
标签: Aartificial Network Neural 人工神经网络
上传时间: 2014-01-03
上传用户:zhangzhenyu
基于人工神经网络实现智能机器人的避障轨迹控制摘 要:利用人工神经网络中的二级 BP网。模拟智能机器人的两控制参数(左 、右轮速)间的函数关系。实现避 障轨迹为圆弧或椭圆弧的轨迹控制 。并且通过调整椭圆长、短轴大小。能实现多个及多层障碍物的避障控制.该方法 的突出特点是方法简单、算法容易实现 。使机器人完成多个及多层避障动作时。不滞后于动态环境里其它机器人(障 碍物)位置的变化.在仿真实验中。取得了理想的效果. 关键词;BP神经网络I多个及多层避障控制I椭圆轨迹1 弓I言(Introduction) 在机器人中,避障轨迹的生成是一个重要的问 题.对于不确定的动态环境下的实时避障轨迹生成, 是较为困难的.有关这方面的研究,目前已有许多方 法.一些神经网络模型被设计出来,产生实时的轨迹 生成.文献113[23提供的神经网络模型产生的轨迹 生成仅能处理在静态环境下及假设空间中没有障碍 物的情况.[3]提供的神经网络模型,能为智能机器 人产生导航的避障轨迹,然而模型在计算上相当复 杂.文献[43提供了Hopfield神经网络模型,能在动 态环境下产生时实的避障轨迹生成,并在文献[5] 中,严格证明了因该方法生成的轨迹没有遭受局部 极小点逃离问题.并且文献[63用两个神经网络层叠 加起来,每层构造相似于[43中的网络结构.它是利 用第二层网络来发现下一个机器人位置的无监督模 型,然而它却加倍了计算量,尽管文献[4,6]提供的 方法能在动态环境下,产生时实避障轨迹,但都具有 较慢的运动速度,在快速变化的环境下不能恰当地 完成动作执行,因为机器人要比较好地完成避障动 作,必须不能滞后于障碍物动作变化
上传时间: 2022-02-12
上传用户:得之我幸78
人工神经网络提供了一种普遍且实用的方法从样例中学习值为实数、离散值或向量的函数反向传播算法,使用梯度下降来调节网络参数以最佳拟合由输入-输出对组成的训练集合人工神经网络对于训练数据中的错误健壮性很好人工神经网络已被成功应用到很多领域,例如视觉场景分析,语音识别,机器人控制神经网络学习对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效的学习方法反向传摇成功例子,学习识别手写字符,学习识别口语,学习识别人脸生物学动机ANN受到生物学的启发,生物的学习系统是由相互连接的神经元组成的异常复杂的网络。ANN由一系列简单的单元相互密集连接构成的,其中每一个单元有一定数量的实值输入,并产生单一的实数值输出人脑的构成,大约有1011个神经元,平均每一个与其他104个相连神经元的活性通常被通向其他神经元的连接激活或抑制最快的神经元转换时间比计算机慢很多,然而人脑能够以惊人的速度做出复杂度惊人的决策很多人推测,生物神经系统的信息处理能力一定得益于对分布在大量神经元上的信息表示的高度并行处理
上传时间: 2022-04-08
上传用户:trh505
随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。
上传时间: 2022-06-16
上传用户:jiabin
木书以神经网络结构为主线,以学习算法为副线,详细介绍了神经网络结构和算法步骤,并给出实例和练习,目的是使读者易看懂,能动手,会应用。主要内容包括:人工神经网络简介、单层前向网络及LMS学习算法、多层前向网络及BP学习算法、支持向量机及其学习算法、 Hopfield神经网络与联想记忆、随机神经网络及模拟退火算法、竞争神经网络和协同神经网络。每章均给出了基于 MATLAB的仿真实例以及练习。
标签: 人工神经网络
上传时间: 2022-07-12
上传用户:
Hopfield Model Autoassociative Memory 源码, 经典的HOPFIELD人工神经网络例子源码
标签: Autoassociative Hopfield HOPFIELD Memory
上传时间: 2015-01-05
上传用户:皇族传媒
Counterpropagation Network Vision 源码, 经典的CPN人工神经网络例子源码
标签: Counterpropagation Network Vision CPN
上传时间: 2015-01-05
上传用户:佳期如梦
Backpropagation Network Time-Series Forecasting 源码, 经典的BPN人工神经网络例子源码
标签: Backpropagation Forecasting Time-Series Network
上传时间: 2015-01-05
上传用户:tb_6877751
Boltzmann Machine Optimization 人工智能人工神经网络源码
标签: Optimization Boltzmann Machine 人工智能
上传时间: 2014-12-07
上传用户:努力努力再努力