虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

LLC串联谐振全桥<b>dcdc</b>变换器的研究

  • 请设计一个通用程序

    请设计一个通用程序,用来计算每一种交通工具行使1000公里所需的时间。已知每种交通工具的速度都是3个整数A、B、C的表达式。现有3种工具:Car 、Plane和Ship,其中Car 的速度运算公式为:A*B/C,Plane 的速度运算公式为:A+B+C,Ship的计算公式为A-B-C。

    标签: 程序

    上传时间: 2014-01-18

    上传用户:cuiyashuo

  • RSA的最重要特色在于双密钥

    RSA的最重要特色在于双密钥,它们有特殊的数学形式。RSA的一对密钥有三个基本参数:模n ,公钥b和私钥a 。n和b是公开的,发送信息方用私钥n加密消息,接受方用公钥b能得到解密后的信息,从而确定发送信息方的身份,这就构成了签名机制。对方用公钥将要发送的信息加密,只有拥有私钥的一方才能将信息解密。

    标签: RSA 密钥

    上传时间: 2017-07-31

    上传用户:JasonC

  • S-V修正信道模型仿真

    通过matlab仿真了Saleh-Valenzuela 信道模型,仿真图有四个子图,(a)和(b)分别示出的分布的群集抵达时间和射线到达时间,(c)表示S-V信道的脉冲响应,(d)图显示了信道功率分配-

    标签: S-V MATLAB

    上传时间: 2015-06-19

    上传用户:sl200111030

  • 全塑RJ45规格图

    全塑RJ45规格书图纸,指的是没有外面的屏蔽壳如铜壳或是铁壳

    标签: 全塑RJ45图纸 全塑RJ45规格书 RJ45规格图 RJ45网口 RJ45接口 网络插座 网络接口 全塑RJ45接口 8P8C网口

    上传时间: 2016-01-08

    上传用户:1234lucy

  • svpwm matlab

    空间矢量脉宽调制(Space Vector Pulse Width Modulation)    SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。    普通的三相全桥是由六个开关器件构成的三个半桥。这六个开关器件组合起来(同一个桥臂的上下半桥的信号相反)共有8种安全的开关状态. 其中000、111(这里是表示三个上桥臂的开关状态)这两种开关状态在电机驱动中都不会产生有效的电流。因此称其为零矢量。另外6种开关状态分别是六个有效矢量。它们将360度的电压空间分为60度一个扇区,共六个扇区,利用这六个基本有效矢量和两个零量,可以合成360度内的任何矢量。    当要合成某一矢量时先将这一矢量分解到离它最近的两个基本矢量,而后用这两个基本矢量矢量去表示,而每个基本矢量的作用大小就利用作用时间长短去代表。    在变频电机驱动时,矢量方向是连续变化的,因此我们需要不断的计算矢量作用时间。为了计算机处理的方便,在合成时一般是定时去计算(如每0.1ms计算一次)。这样我们只要算出在0.1ms内两个基本矢量作用的时间就可以了。由于计算出的两个时间的总合可能并不是0.1ms(比这小),而那剩下的时间就按情况插入合适零矢量。 由于在这样的处量时,合成的驱动波形和PWM很类似。因此我们还叫它PWM,又因这种PWM是基于电压空间矢量去合成的,所以就叫它SVPWM了。 

    标签: matlab svpwm

    上传时间: 2016-04-25

    上传用户:bijiaohao22

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 高斯-约旦法(全选主元)求逆

    高斯-约旦法(全选主元)求逆的步骤及其C语言的实现

    标签: 高斯

    上传时间: 2017-12-09

    上传用户:qwqw

  • 开关电源设计参考资料

    开关电源设计实例指南,OCP电路,反激式、正激式、推挽式、半桥式、全桥式开关电源的优点与缺点,

    标签: 开关电源设计 参考资料

    上传时间: 2018-04-03

    上传用户:yuwei664

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • 在人们的生产实践中

    在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。自从 1947 年 G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深 入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实

    标签: 实践

    上传时间: 2018-09-17

    上传用户:中国宏军