虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

LLC串联谐振<b>全桥</b>DCDC变换器的研究

  • 电磁感应加热系统及IGBT功率模块驱动

    本文把所研制的IGBT驱动保护电路应用在电磁感应加热系统上,并且针对注塑机的特点设计了一款电磁感应加热系统。其中包括整流滤波电路、半桥逆变电路、控制电路、驱动电路和温度、电流等检测电路。本文的另一个重点分析了IGBT对驱动保护电路的要求,并且研制了一种单管IGBT驱动保护电路和一种IGBT半桥模块驱动保护电路。单管1GBT驱动电路的功能比较简单,只具有软关断和过流保护功能。而IGBT半桥模块驱动保护电路功能比较多,具有软关断、互锁、电平转换、错误信号电平转换、过流保护、供电电压监视、电源隔离和脉冲隔离电路等保护功能,适用于中大功率的IGBT半桥模块驱动。在电磁感应加热部分介绍了电磁感应加热的工作原理,分析了串并联谐振逆变器的拓扑结构和特点。根据注塑机的实际应用设计了两款主电路的拓扑结构,一款是针对小功率部分加热的拓扑结构,是单管IGBT的拓扑结构,另一款是针对中大功率加热部分的半桥IGBT拓扑结构。另外介绍了电磁感应加热的控制电路以及采用模糊PID算法对注塑机料筒进行温度监控调节。最后通过对系统的仿真和实验调试表明整个感应加热系统满足实际应用要求,运行可靠,适合于再注塑机行业中推广。最后,总结了本文的研究内容,并在此基础上对以后的工作做出了简单的展望。

    标签: 电磁感应加热系统 igbt 功率模块

    上传时间: 2022-06-21

    上传用户:

  • LTSpice学习笔记

    LTspice1.变压器仿真的简单步骤:A.为每个变压器绕组绘制一个电感器B.采用一个互感(K)描述语句通过一条SPICE指令对其实施耦合:K1L1L21K语句的最后一项是耦合系数,其变化范围介于0和1之间,1代表没有漏电感。对于实际电路,建议您采用耦合系数=l作为起点。每个变压器只需要一个K语句;LTspice为一个变压器内部的所有电感器应用了单一耦合系数。下面所列是上述语句的等效语句:K1L1L21K2L2L31K3LlL31C.采用“移动”(F7)、“旋转”(Ctrl+R)和“镜像”(Ctrl+E)命令来调节电感器位置以与变压器的极性相匹配。添加K语句可显示所含电感器的调相点。D.LTspice采用个别组件值(在本场合中为个别电感器的电感)而非变压器的匝数比进行变压器的仿真。电感比与匝数比的对应关系如下:

    标签: ltspice

    上传时间: 2022-06-24

    上传用户:

  • 全彩OLED屏显示系统的设计

    1引言有要发光二极管(OLED)具有低驱动电压、宽温工作、主动发光、响应速度快和视角宽等优点],其作为全彩显示器件,与LCD相比,具有更简单的工艺和更低的成本。近年,单色和局域色的OLED显示屏已有较多报道~1,并推出了全彩OLED显示屏~9]。本文研制了尺寸为1.9、分辨率为128(×3)×160的全彩OLED屏。在目前报道的同等或以下尺寸的采用无源矩阵(PM)驱动的全彩OLED屏中,该屏的分辨率处于较高水平。2全彩OLED屏2.1全彩技术的实现图1是5种实现全彩OLED显示屏技术的示意图。本文采用(a)所示的平面结构式,每个全彩像素包括红、绿和蓝3个子像素,利用空间混色实现彩色。这种技术的难点是在制作全彩OLED时,需要将红、绿和蓝OLED的发光层(EML)材料分隔开01。屏的最高分辨率不仅受限于机械掩模制作的公差,还受限于在器件制作工艺过程中机械掩模与ITO基板玻璃的对准误差。2.2P-OLED屏的驱动技术OLFD属于电流型器件,其发光亮度与驱动电流成正比,故OLED均采用恒流源驱动。由于OLED自身较高的寄生电容(20~30pF/pixel)和ITO电极引线的电阻(几~几109/口形成的电压降,对恒流源的性能提出了较高的要求,例如可提供高达~30V的电压。为了实现多灰度显示,电流必须可程控。lare公司为了精确控制每个OLED子像素的发光亮度,提出了预充电方案]。根据有无开关和驱动薄膜晶体管的存在,可将矩阵式OLED的驱动可分为P10l和有源矩阵AM112种。PM驱动的显示器件由于制作工艺比AM要简单得多,且成本低廉,故在小尺寸的显示器件上得到了广泛应用。PM驱动电路如图2所示。

    标签: oled

    上传时间: 2022-06-24

    上传用户:

  • 5KW_PCS逆变器_并网充放电,并网离网切换STM32F103为主控

    5KW_PCS逆变器_并网充放电,并网离网切换STM32F103为主控主控平台:STM32F103RCT6逆变拓扑:全桥功能:并网充电、放电;并网离网自动切换;485通讯,在线升级;描述:本方案适用于户用储能系统,提供完善的通讯协议适配BMS和上位机          本方案可实现并网充电、放电;自动判断并离网切换;可实现并机功能;风扇智能控制;提供过流、过压、短路、过温等全方位的保护基于arm的方案区别于DSP,提供一种性价比极高的选择可在此基础上开发各衍生的电源产品

    标签: 逆变器 stm32

    上传时间: 2022-06-24

    上传用户:fliang

  • 基于labvIEW的PLC与上位机通讯系统设计

    论文以松下FP1系列PLC为研究对象,对其MEWTOCOL-COM协议,有关远程测控系统开发,以及PLC指令的机器代码进行系统研究,并在此基础上开发B/S模式的Web远程测控系统。论文首先介绍了PLC的运用领域和发展前景;其次对MEWTOCOL-COM协议进行了系统的研究分析,以实验统计的方式,得出了PLC基本指令的机器代码表;接着基于LABVIEW10.0,开发了PLC与上位机的人机界面,简单实现了上位机对PLC端口,寄存器,定时器以及布尔命令的读写功能。接下来又介绍了通讯原理和通讯模式,描述了LABVIEW10.0中的通讯函数,然后以16盏流水灯为例子,先在向PLC输入梯形图,然后在通讯系统上对PLC的进行监控,以16盏布尔灯显示其运行过程。接着比较分析了Date Socket通讯,TCP通讯和Web通讯的优缺点,并解释了最终通讯方案选择的原因。最后基于Web通讯技术实现了PLC与上位机的远程通讯。本文技术对进一步研发PLC与上位机通讯系统提供了一定的借鉴作用,尤其机代码的测定在后续进一步开发通讯界面提供了新的方向。

    标签: labview plc 上位机 通讯系统

    上传时间: 2022-06-25

    上传用户:得之我幸78

  • 7.5W/10W/15W 多线圈无线充电发射控制器IP6809 datasheet

    兼容WPC v1.2.4协议的7.5W/10W/15W多线圈无线充电发射控制器--IP6809一 概述IP6809是一款无线充电发射端控制SoC芯片,兼容WPC Qi v1.2.4最新标准,支持3线圈无线充电应用,支持A28线圈、MP-A8线圈,支持客户线圈定制方案,支持5W、苹果 7.5W、三星10W、15W充电。IP6809通过analog ping检测到无线接收器,并建立与接收端之间的通信,则开始功率传输。IP6809通过切换不同的工作线圈执行analogping并检测信号强度的方式确定接收机摆放位置,并选择信号最强的线圈执行充电动作。IP6809 解码从接收器发送的通信数据包,然后用PID算法来改变振荡频率从而调整线圈上的输出功率。一旦接收器上的电池充满电时,IP6809终止电力传输.片内集成全桥驱动电路和电压&电流两路ASK通讯解调模块,集成度高,降低方案尺寸和BOM成本. 二 特性兼容WPC v1.2.4标准支持5~15W多种应用单独5W应用快充充电器输入5~10W应用5V充电器输入5~10W升压应用9V~15V充电器输入5~10W降压应用12~19V充电器输入15W应用支持多线圈支持2~3个线圈支持自动检测接收线圈摆放位置通过特定IO的电平状态判断是2/3线圈输入耐压高达25V集成NMOS全桥驱动集成内部电压/电流解调支持FOD异物检测功能--高灵敏静态异物检测--支持动态FOD检测--FOD参数可调低静态功耗和高效率静态电流4mA实测系统充电效率高达79%兼容NPO电容和CBB电容支持成品固件在线升级针对供电能力不足的USB电源有动态功率调整功能(DPM)支持低至5V 500mA的充电器输入过压,过流保护功能支持PD3.0输入请求支持NTC用于系统各状态指示的3路LED支持客户灯显定制封装6mm×6mm 0.5pitch QFN40三 应用背夹、无线充电底座车载无线充电设备

    标签: 无线充电

    上传时间: 2022-06-25

    上传用户:

  • 现代高频开关电源实用技术 刘胜利

    这本书真的很好,当年做大功率移相全桥的时候主要就靠她了,学习移相全桥非常好的书籍,对搞拓扑波形的爱好者们,非常有用!

    标签: 高频m开关电源

    上传时间: 2022-06-30

    上传用户:ttalli

  • 51单片机的无刷电机控制器带PID硬件图加仿真图加程序

    基于51无刷电机控制器,制作简单,仿真已经实验成功。此驱动电路采用以3片IR2110为中心的6个N沟道的MOSFET管组成的三相全桥逆变电路,仅对上桥臂功率MOSFET管进行PWM调制的控制方式。其输入是以功率地为地的PWM波,送到IR2110的输入端口,输出控制N沟道的功率驱动管MOSFET的开关,由此驱动无刷直流电动机。

    标签: 51单片机 电机控制器 pid

    上传时间: 2022-07-02

    上传用户:XuVshu

  • PSpice的电力电子电路仿真研究.

    随着电力电子技术和电子计算机的迅速发展,电路的分析与设计方法发生了重大革命。以电子计算机为基础的电子设计自动化技术已广泛应用于电路与系统的设计中。它改变了以定量估算和电路实验为基础的传统设计方法,成为现代电路系统设计的关键技术之一,是必不可少的工具与手段。电路仿真工具是以电路理论、数值计算方法和计算机技术为基础实现的。它以电路理论为依据,采用合适的数学模型和仿真算法,利用计算机存储和图像处理的高速和高效率,完成具体电路的仿真。它无需任何实际元器件,用预先设计出的各种功能的应用程序取代了大量的仪器仪表。电路设计工作者也可以通过这些应用程序进行各种分析、计算和效验,完成所需特殊电路的设计工作。本文在仿真工具PSpice的基础上,对电力电子电路的器件、开环系统、闭环系统进行建模仿真分析。在器件的建模仿真中,详细地分析了功率二极管、lGBT、变压器的特性并分别建立了PSpice模型。在开环装置中对boost变换器和移相全桥ZVS-PWMDC/DC变换器进行详细的理论分析同时对其进行PSpice仿真分析。通过仿真分析为电路的参数选择和设计提供了可靠的依据。在闭环系统中为了加快仿真过程,根据开关电源控制器的行为建立了SG1524B芯片的行为模型。有效地降低了仿真时间。

    标签: pspice 电力电子电路

    上传时间: 2022-07-06

    上传用户:

  • 电子电路——从入门到精通

    一、弄懂电子技术常用名称、概念、图形及文字符号、单位制等,初学者必须弄 懂电子技术常用的名称、概念,比如什么是电流、电压、电阻,什么是直流电、 交流电,什么是串联、并联、串并联,什么是频率、周期、波长、振幅、相位, 什么是阻抗、容抗、感抗,什么是磁场、磁力线、磁通,什么叫耦合、负载、电 功率,什么是通路、开路、短路,什么是自感、互感、串联谐振、并联谐振,什 么是导体、绝缘体、半导体等等,这些也就是最起码的初中物理知识。对一些容 易混淆的名称概念,如电压、电压降、电位、电位差、电动势等,要弄清它们的 区别,还要知道它们的文字符号、单位及换算。

    标签: 电子电路

    上传时间: 2022-07-07

    上传用户: