一种通过自组织竞争学习网络实现数据降维和可视化的单层神经网络模型。用此算法可以把输入空间的多维映射到低维的(一维或者二维)的离散网络上
一种通过自组织竞争学习网络实现数据降维和可视化的单层神经网络模型。用此算法可以把输入空间的多维映射到低维的(一维或者二维)的离散网络上,并将保持相同性质的输入数据在映射到低维空间时的拓扑一致性。iris以及letter两个数据集进行分类...
一种通过自组织竞争学习网络实现数据降维和可视化的单层神经网络模型。用此算法可以把输入空间的多维映射到低维的(一维或者二维)的离散网络上,并将保持相同性质的输入数据在映射到低维空间时的拓扑一致性。iris以及letter两个数据集进行分类...
先用C-均值聚类算法程序,并用下列数据进行聚类分析。在确认编程正确后,采用蔡云龙书的附录B中表1的Iris数据进行聚类。然后使用近邻法的快速算法找出待分样本X(设X样本的4个分量x1=x2=x3=x4=6;子集数l=3)的最近邻节点和3-近邻节点及X与它们之间的距离。...
·摘要: 为了克服传统的相对幅度法在同井质量评价中识别率低下的缺点,提出了一种基于改进粒子群一小波神经网络的固井质量智能评价方法.首先在应用李亚普诺夫理论分析得到单个粒子收敛条件的基础上,提出一种粒子群改进算法,接着利用该算法来优化小波神经网络权值.应用Iris标准分类数据集对本文算法进...
基于粒子群优化的神经网络训练算法研究论文 摘 要: 本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Io...
以AT89C51单片机为核心,结合数字电子技术相关电路,设计了一款基于变介电常数的植物叶片含水率无损检测装置。该装置采用夹持型平行极板电容器与555定时器搭建多谐振荡器,以待测叶片作为电容极间介质,通过待测叶片水分变化影响介电常数,进而改变多谐振荡器频率,再由单片机完成数据读取与处理,以此来检测叶片...