虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Fire-Workflow-Engine-All-In-One

  • Building a RISC System in an FPGA

    Building a RISC System in an FPGA

    标签: Building System RISC FPGA

    上传时间: 2013-09-04

    上传用户:朗朗乾坤

  • Fpga Implementation Of Digital Timing Recovery In Software Radio Receiver

    Fpga Implementation Of Digital Timing Recovery In Software Radio Receiver

    标签: Implementation Recovery Receiver Software

    上传时间: 2013-09-05

    上传用户:panpanpan

  • FPGA in the software radio

    FPGA in the software radio

    标签: software radio FPGA the

    上传时间: 2013-09-06

    上传用户:lina2343

  • Many CAD users dismiss schematic capture as a necessary evil in the process of creating

    Many CAD users dismiss schematic capture as a necessary evil in the process of creating\r\nPCB layout but we have always disputed this point of view. With PCB layout now offering\r\nautomation of both component placement and track routing, getting the des

    标签: schematic necessary creating dismiss

    上传时间: 2013-09-25

    上传用户:baiom

  • Verilog Coding Style for Efficient Digital Design

      In this paper, we discuss efficient coding and design styles using verilog. This can beimmensely helpful for any digital designer initiating designs. Here, we address different problems rangingfrom RTL-Gate Level simulation mismatch to race conditions in writing behavioral models. All theseproblems are accompanied by an example to have a better idea, and these can be taken care off if thesecoding guidelines are followed. Discussion of all the techniques is beyond the scope of this paper, however,here we try to cover a few of them.

    标签: Efficient Verilog Digital Coding

    上传时间: 2013-11-22

    上传用户:han_zh

  • Verilog编码中的非阻塞性赋值

      One of the most misunderstood constructs in the Verilog language is the nonblockingassignment. Even very experienced Verilog designers do not fully understand how nonblockingassignments are scheduled in an IEEE compliant Verilog simulator and do not understand whenand why nonblocking assignments should be used. This paper details how Verilog blocking andnonblocking assignments are scheduled, gives important coding guidelines to infer correctsynthesizable logic and details coding styles to avoid Verilog simulation race conditions

    标签: Verilog 编码 非阻塞性赋值

    上传时间: 2013-10-17

    上传用户:tb_6877751

  • 行为模式和同步事件调度操作

    The Reactor design pattern handles service requests that are delivered concurrently to an application by one or more clients. Each service in an application may consist of serveral methods and is represented by a separate event handler that is responsible for dispatching service-specific requests.

    标签: 模式 操作 调度

    上传时间: 2013-10-15

    上传用户:libinxny

  • LTC1099基于PC的数据采集板实现

    A complete design for a data acquisition card for the IBM PC is detailed in this application note. Additionally, C language code is provided to allow sampling of data at speed of more than 20kHz. The speed limitation is strictly based on the execution speed of the "C" data acquisition loop. A "Turbo" XT can acquire data at speeds greater than 20kHz. Machines with 80286 and 80386 processors can go faster than 20kHz. The computer that was used as a test bed in this application was an XT running at 4.77MHz and therefore all system timing and acquisition time measurements are based on a 4.77MHz clock speed.

    标签: 1099 LTC 数据 采集板

    上传时间: 2013-10-29

    上传用户:BOBOniu

  • 寄生电容在升压变压器中的设计应用

    One of the most critical components in a step-up design like Figure 1 is the transformer. Transformers have parasitic components that can cause them to deviate from their ideal characteristics, and the parasitic capacitance associated with the secondary can cause large resonating current spikes on the leading edge of the switch current waveform.

    标签: 寄生电容 升压变压器 中的设计

    上传时间: 2013-11-22

    上传用户:15070202241

  • DAC技术用语 (D/A Converters Defini

    Differential Nonlinearity: Ideally, any two adjacent digitalcodes correspond to output analog voltages that are exactlyone LSB apart. Differential non-linearity is a measure of theworst case deviation from the ideal 1 LSB step. For example,a DAC with a 1.5 LSB output change for a 1 LSB digital codechange exhibits 1⁄2 LSB differential non-linearity. Differentialnon-linearity may be expressed in fractional bits or as a percentageof full scale. A differential non-linearity greater than1 LSB will lead to a non-monotonic transfer function in aDAC.Gain Error (Full Scale Error): The difference between theoutput voltage (or current) with full scale input code and theideal voltage (or current) that should exist with a full scale inputcode.Gain Temperature Coefficient (Full Scale TemperatureCoefficient): Change in gain error divided by change in temperature.Usually expressed in parts per million per degreeCelsius (ppm/°C).Integral Nonlinearity (Linearity Error): Worst case deviationfrom the line between the endpoints (zero and full scale).Can be expressed as a percentage of full scale or in fractionof an LSB.LSB (Lease-Significant Bit): In a binary coded system thisis the bit that carries the smallest value or weight. Its value isthe full scale voltage (or current) divided by 2n, where n is theresolution of the converter.Monotonicity: A monotonic function has a slope whose signdoes not change. A monotonic DAC has an output thatchanges in the same direction (or remains constant) for eachincrease in the input code. the converse is true for decreasing codes.

    标签: Converters Defini DAC

    上传时间: 2013-10-30

    上传用户:stvnash