j1939 附录a附录b
标签: j1939
上传时间: 2022-06-09
上传用户:
产品型号:VK2C21A/B/C/D 产品品牌:VINKA/永嘉微/永嘉微电 封装形式:SOP28/24/20/16 裸片:DICE(邦定COB)/COG(邦定玻璃用) 产品年份:新年份 联 系 人:许硕 Q Q:191 888 5898 联系手机:18898582398(信) 原厂直销,工程服务,技术支持,价格最具优势!QT459 VK2C21A/B/C/D概述: VK2C21是一个点阵式存储映射的LCD驱动器,可支持最大80点(20SEGx4COM)或者最大128点(16SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。 特点: ★ 工作电压 2.4-5.5V ★ 内置32 kHz RC振荡器 ★ 偏置电压(BIAS)可配置为1/3、1/4 ★ COM周期(DUTY)可配置为1/4、1/8 ★ 内置显示RAM为20x4位、16x8位 ★ 帧频可配置为80Hz、160Hz ★ 省电模式(通过关显示和关振荡器进入)
标签: VK2C21 VK2C21A VK2C21B VK2C21C VK2C21D LCD抗干扰段码屏驱动 段码屏驱动抗干扰
上传时间: 2022-06-09
上传用户:2937735731
描述了NTC使用B值计算出实际温度与输出的电压之间的关系。
标签: ntc计算
上传时间: 2022-06-15
上传用户:
BC20-TE-B NB-Iot 评估板评估板原厂原理图V1.2。完整对应实物装置。
上传时间: 2022-06-17
上传用户:
ASR M08-B设置软件 V3.2 arduino 2560+ASRM08-B测试程序 arduino UNO+ASRM08-B测试程序语音控制台灯电路图及C51源码(不带校验码) 继电器模块设置。 ASR M08-B是一款语音识别模块。首先对模块添加一些关键字,对着该模块说出关键字,串口会返回三位的数,如果是返回特定的三位数字,还会引起ASR M08-B的相关引脚电平的变化。【测试】①打开“ASR M08-B设置软件 V3.2.exe”。②选择“串口号”、“打开串口”、点选“十六进制显示”。③将USB转串口模块连接到语音识别模块上。接线方法如下:语音模块TXD --> USB模块RXD语音模块RXD --> USB模块TXD语音模块GND --> USB模块GND语音模块3V3 --> USB模块3V3(此端为3.3V电源供电端。)④将模块的开关拨到“A”端,最好再按一次上面的大按钮(按一次即可,为了确保模块工作在正确的模式)。⑤对着模块说“开灯”、“关灯”模块会返回“0B”、“0A”,表示正常(注意:0B对应返回值010,0B对应返回值010,返回是16进制显示的嘛,设置的时候是10进制设置的)。
标签: ASR M08-B
上传时间: 2022-07-06
上传用户:aben
摘 要:用一种新的思路和方法,先计算低通、再计算高通滤波器的有关参数,然后组合成带通滤波器.关键词:滤波器;参数;新思路中图分类号: TN713. 5 文献识别码:B 文章编号:1008 - 1666 (1999) 04 - 0089 - 03A New Consideration of the Band Filter’s CalculationGuo Wencheng( S hao Yang B usiness and Technology school , S haoyang , Hunan ,422000 )Abstract :This essay deals with a new method of calculating the band filters - first calculatingthe relevant parameters of low - pass filters ,then calculating the ones of high - pass filters.Key words :filter ; parameters ;new considercation八十年代后,信息产业得到了迅猛发展. 带通滤波器在微波通信、广播电视和精密仪器设备中得到了广泛应用. 带通滤波器性能的优劣,对提高接收机信噪比,防止邻近信道干扰,提高设备的技术指标,有着十分重要的意义.我在长期的教学实践中,用切比雪夫型方法设计、计算出宽带滤波器集中参数元件的数据. 该滤波器可运用在检测微波频率的仪器和其他设备中. 再将其思路和计算方法介绍给大家,供参考.
上传时间: 2014-12-28
上传用户:Yukiseop
acm HDOJ 1051WoodenSticks Description: There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows: (a) The setup time for the first wooden stick is 1 minute. (b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l and weight w if l<=l and w<=w . Otherwise, it will need 1 minute for setup.
标签: WoodenSticks Description length wooden
上传时间: 2014-03-08
上传用户:netwolf
This document contains a general overview in the first few sections as well as a more detailed reference in later sections for SVMpython. If you re already familiar with SVMpython, it s possible to get a pretty good idea of how to use the package merely by browsing through svmstruct.py and multiclass.py. This document provides a more in depth view of how to use the package. Note that this is not a conversion of SVMstruct to Python. It is merely an embedding of Python in existing C code. All code other than the user implemented API functions is still in C, including optimization.
标签: document contains detailed overview
上传时间: 2013-12-14
上传用户:希酱大魔王
本程序要求用户在控制台里输入非终极符,终结符与产生式,然后对用户输入的文法进行分析,得出first集 与follow 集,并打印出预测分析表用户决定是否继续进行句型分析,如继续则给出符号分析栈的实现,从而判断刚输入的句子是否为符合该文法的句子。 该程序遵循LL(1) 文法FIRST(A)的构造:是A的所有可能推导的开头终结符或可能的ε FOLLOW(A)是所有句型中出现在紧接A之后的非终结符或“#” 预测分析程序 构造LL(1)分析表 ⅰ,构造文法中所有元素的FIRST和FOLLOW集合 ⅱ,对文法G的每个产生式A->α执行第三步和第四步 ⅲ,对每个终结符a∈FIRST(α),把A->α加至M[A,a] ⅳ,若ε∈FIRST(α),则对任何b∈FOLLOW(A)把A->α加至M[A,b]中 ⅴ,把所有无定义的M[A,a]标上“出错标志”
上传时间: 2013-12-27
上传用户:jackgao
The task of clustering Web sessions is to group Web sessions based on similarity and consists of maximizing the intra- group similarity while minimizing the inter-group similarity. The first and foremost question needed to be considered in clustering W b sessions is how to measure the similarity between Web sessions.However.there are many shortcomings in traditiona1 measurements.This paper introduces a new method for measuring similarities between Web pages that takes into account not only the URL but also the viewing time of the visited web page.Yhen we give a new method to measure the similarity of Web sessions using sequence alignment and the similarity of W eb page access in detail Experiments have proved that our method is valid and e币cient.
标签: sessions clustering similarity Web
上传时间: 2014-01-11
上传用户:songrui