All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
上传时间: 2013-10-23
上传用户:copu
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.
上传时间: 2014-04-02
上传用户:han_zh
FPGA的CPU设计
上传时间: 2013-11-20
上传用户:yqs138168
为了提高门禁系统的安全便利性,提出了一种基于国密算法的CPU卡的门禁系统的解决方案。首先对门禁系统的组成进行了介绍,接着论述了非接触CPU卡的相对于非接触逻辑加密卡的特点及优势;基于国密算法SM1的特点以及配合落实住建部重要门禁系统密码应用安全管理工作要求,提出了一种基于国密SM1算法CPU卡的门禁系统解决方案。基于国密算法CPU卡的门禁系统解决方案能够满足最新门禁系统市场需求,具有安全、灵活多样等多种的特点。
上传时间: 2013-11-01
上传用户:xiaoyunyun
CPU卡安全认证技术
上传时间: 2013-11-02
上传用户:lizx30340
信捷PLC CPU 处理器
上传时间: 2014-01-23
上传用户:wbwyl
手机CPU排行
上传时间: 2013-10-19
上传用户:tzrdcaabb
对于如何从MIFARE Classic卡片升级到PLUS CPU 卡片在“MIFARE S50、S70升级PLUS CPU卡方案”文档中已有详细说明,那么原来使用的PLUS CPU卡片如何进行升级了?带着这个问题,我们将与您共同探讨,后面的内容将向您提供一种完美、可靠、易用的解决方案,谢谢您的关注与支持!
上传时间: 2014-12-31
上传用户:VRMMO
This example shows how to update at regulate period the WWDG counter using theEarly Wakeup interrupt (EWI). The WWDG timeout is set to 262ms, refresh window set to 41h and the EWI isenabled. When the WWDG counter reaches 40h the EWI is generated and in the WWDGISR the counter is refreshed to prevent a WWDG reset and led connected to PC.07is toggled.The EXTI line9 is connected to PB.09 pin and configured to generate an interrupton falling edge.In the NVIC, EXTI line9 to 5 interrupt vector is enabled with priority equal to 0and the WWDG interrupt vector is enabled with priority equal to 1 (EXTI IT > WWDG IT). The EXTI Line9 will be used to simulate a software failure: once the EXTI line9event occurs (by pressing Key push-button on EVAL board) the correspondent interruptis served, in the ISR the led connected to PC.07 is turned off and the EXTI line9pending bit is not cleared. So the CPU will execute indefinitely EXTI line9 ISR andthe WWDG ISR will never be entered(WWDG counter not updated). As result, when theWWDG counter falls to 3Fh the WWDG reset occurs.If the EXTI line9 event don抰 occurs the WWDG counter is indefinitely refreshed inthe WWDG ISR which prevent from WWDG reset. If the WWDG reset is generated, after resuming from reset a led connected to PC.06is turned on. In this example the system is clocked by the HSE(8MHz).
上传时间: 2013-11-11
上传用户:gundamwzc
FPGA的CPU设计
上传时间: 2015-01-01
上传用户:lansedeyuntkn