虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

ANN-BP

  • vc下的ANN bp算法的实现

    vc下的ANN bp算法的实现

    标签: ANN 算法

    上传时间: 2014-11-29

    上传用户:sssl

  • ANN with BP learning

    ANN with BP learning

    标签: learning with ANN BP

    上传时间: 2014-01-01

    上传用户:czl10052678

  • BP神经网络算法的matlab代码

    BP神经网络算法的matlab代码,本程序根据训练好的网络文件ANN.mat预测新的数据文件,得到均方误差,并画出预测数据和原数据的对比图。希望有用

    标签: matlab BP神经网络 算法 代码

    上传时间: 2014-06-14

    上传用户:jiahao131

  • 基于遗传算法的BP神经网络的优化研究及MATLAB仿真

    随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。

    标签: 遗传算法 bp神经网络 matlab

    上传时间: 2022-06-16

    上传用户:jiabin

  • 基于BP神经网络的永磁同步电机自适应控制研究.rar

    本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。

    标签: BP神经网络 永磁同步电机 自适应控制

    上传时间: 2013-05-23

    上传用户:1101055045

  • 基于ANN的无刷直流电机无位置传感器控制及转矩波动研究.rar

    该文研究了无刷直流电机的无位置传感器控制理论、转矩波动抑制方法、数字仿真算法和DSP控制技术.首先,该文介绍了无刷直流电机无位置传感器控制原理,比较了目前几种常用的无位置传感器控制方法,提出了基于径向基函数(RBF)神经网络的无位置传感器控制方法.通过离散化位置信号的映射方程,得到网络的基本输入输出,网络的输出通过逻辑处理,处理后的结果作为电机控制信号,同时也作为网络的训练教师.采用在线学习和离线学习两种方式训练网络,并详细介绍了两种方式的算法;其次,该文概述了无刷直流电机转矩波动的产生原因,重点分析了换相转矩波动产生的原理,提出了基于误差反传(BP)神经网络的转矩波动抑制新方法.采用两个结构相同三层网络,建立了电压自校正调节器,对电机端电压进行瞬时调节,保持电路中电流幅值不变,实现了转矩波动的自适应调节.另外,该文推导了较全面的电机数学模型,重点研究了无刷直流电机仿真中的几个关键技术,包括气隙磁场的建立、位置信号的模拟、中心点电压的计算、二极管续流状态的实现以及PWM电流控制的仿真.采用面向对象程序设计(OOP)方法,设计了多功能的仿真软件SIMOT.最后该文介绍了数字信号处理器(DSP)TMS320LF2407的结构和性能,给出了PWM控制和A/D转换的算法,采用反电势法原理实现了无位置传感器控制,并给出了相关的实验结果.

    标签: ANN 无刷直流电机 无位置传感器

    上传时间: 2013-07-14

    上传用户:klds

  • 基于BP神经网络的无刷直流电机PID控制方法的研究.rar

    无刷直流电机(BLDCM)是随着电机控制技术、电力电子技术和微电子技术的发展而出现的一种新型电机。它是在有刷直流电机的基础上发展起来的。无刷直流电机具有交流电机的结构简单、运行可靠、维护方便等一系列特点,又具有直流电机的运行效率高、无励磁损耗以及调速性能好等诸多优点,在很多场合有广泛的应用前景,成为了国内外研究的热点。无刷直流电机传统的理论部分分析和设计方法已经比较成熟,因此对无刷直流电机控制策略的研究就显得十分重要。 PID控制以其结构简单、可靠性高、易于工程实现等优点至今仍被广泛应用。在系统模型参数变化不大的情况下,PID控制性能优良。但在工业上有许多无法建立精确数学模型的复杂控制对象和非线性控制对象,若采用传统的PID进行控制的话,那么很难获得比较理想的控制效果。 对于无刷直流电机而言,它是一个多变量、强耦合的非线性系统,固定参数的PID调节器无法得到很理想的控制性能指标。基于以上原因,本文以无刷直流电机为控制对象,通过分析无刷直流电机的数学模型,以BP神经网络为基础,设计了应用于无刷直流电机的神经网络PID控制器。 在MATLAB平台上,先利用神经网络PID控制器,给出相应的控制算法,对典型的参数时变非线性系统的控制进行了仿真研究。仿真结果表明,同传统PID控制器相比,神经网络PID控制器对模型、环境具有较好的适应能力与较强的鲁棒性,有效的改善了系统的控制结果,达到了预期的目的。随后利用SIMULNK建立了无刷直流电机控制系统的仿真模型。分别采用普通PID控制器和神经网络PID控制器对电机的不同运行状况进行了仿真分析。仿真结果验证了所建模型的正确性,并证明了神经网络控制的优越性。

    标签: PID BP神经网络 无刷直流电机

    上传时间: 2013-08-04

    上传用户:YYRR

  • 基于BP神经网络的永磁同步电机自适应控制研究.rar

    永磁同步电机(Permanent Magnet Synchronous Motor)因功率密度大、效率高、过载能力强、控制性能优良等优点,在中小容量调速系统和高精度调速场合发展迅速。但由于永磁同步电机的磁场具有独特的交叉耦合和交叉饱和现象,且其控制系统是一个强非线性、时变和多变量系统,要实现高精度调速就需对其控制策略进行深入研究。 永磁同步电机调速系统中,位置传感器的存在使得系统成本增加、结构复杂、可靠性降低,所以永磁同步电机的无位置传感器控制成为一个新的研究热点。本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。

    标签: BP神经网络 永磁同步电机 自适应控制

    上传时间: 2013-07-03

    上传用户:kakuki123

  • 基于BP神经网络的字符识别

    ·基于BP神经网络的字符识别

    标签: BP神经网络 字符识别

    上传时间: 2013-06-17

    上传用户:brucewan

  • 基于PCA和BP神经网络算法的车牌字符识别

    ·基于PCA和BP神经网络算法的车牌字符识别

    标签: PCA BP神经网络 算法 车牌字符

    上传时间: 2013-04-24

    上传用户:maizezhen