虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

A-P

  • 基于单DSP的VoIP模拟电话适配器研究与实现

    基于单DSP的VoIP模拟电话适配器研究与实现:提出和实现了一种新颖的基于单个通用数字信号处理器(DSP)的VoIP模拟电话适配器方案。DSP的I/O和存储资源非常有限,通常适于运算密集型应用,不适宜控制密集型应用[5]。该系统高效利用单DSP的I/O和片内外存储器资源,采用μC/OS-II嵌入式实时操作系统,支持SIP和TCP-UDP/IP协议,通过LAN或者宽带接入,使普通电话机成为Internet终端,实现IP电话。该系统软硬件结构紧凑高效,运行稳定,成本低,具有广阔的应用前景。关键词:模拟电话适配器;IP电话;数字信号处理器;μC/OS-II 【Abstract】This paper presents a VoIP ATA solution based on a single digital signal processor (DSP). DSPs are suitable for arithmetic-intensiveapplication and unsuitable for control-intensive application because of the limitation of I/O and memory resources. This solution is based on a 16-bitfixed-point DSP and μC/OS-II embedded real-time operating system. It makes good use of the limited resources, supports SIP and TCP-UDP/IPprotocol. It can connect the analog telephone to Internet and realize the VoIP application. This system has a great future for its high efficiency andlow cost.【Key words】Analog telephone adapter (ATA); Voice over Internet protocol (VoIP); Digital signal processor (DSP); μC/OS-II Research and Implementation of VoIPATA Based on Single DSP

    标签: VoIP DSP 模拟电话 适配器

    上传时间: 2013-11-20

    上传用户:Wwill

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • 高压双管反激变换器的设计

    高压双管反激变换器的设计:介绍一种双管反激的电路拓扑,分析了其工作原理,给出了一些关键技术参数的计算公式,设计并研制成功的30W 380V AC5 0H z/510V DC/+15.1 V DC(1A )、+5.2VDC(2A)辅助开关电源具有功率密度高、变换效率高、可靠性高等优良的综合性能。该变换器在高电压输人情况下有重要的应用价值。【关 键 词 】变换器,辅助开关电源,双管反激 [Abstract】 A n e wt opologyfo rd oubles witchfl ybackc onverteris in troduced.Th eo perationp rincipleis a nalyzeda nds ome for mulas for calculating key parameters for the topology are presented. The designed and produced auxiliary switching power supply,i. e. 30W 380V AC5 0H z/5 10V DC/+15.1 V DC《1A )、+5.2 V DC《2A ),hase xcellentc omprehensivep erformances sucha sh ighp owerd ensity, hi ghc onversione fficiencya ndh ighr eliability.Th isc onverterh asim portanta pplicationv aluef orh igh input voltag [Keywords ]converter,au xiliary switchingp owers upply,do ubles witchf lybac

    标签: 双管反激 变换器

    上传时间: 2013-11-01

    上传用户:Ants

  • 基于LabVIEW和单片机的空调温度场测量系统的研究

    基于LabVIEW和单片机的空调温度场测量系统的研究:室内温度是空调系统舒适性的重要指标,对其及时、准确地测量显得非常重要。介绍单片机AT89C51 和数字式、单总线型温度传感器DS18B20 组成矩形测量网络采集空调室内40 点温度,LabVIEW作为开发平台,二者之间通过串口实现数据通信,利用LabVIEW强大的数据处理和显示功能对采集的空调温度场数据进行实时处理、分析和显示,详细介绍了系统的硬件结构和软件模块的设计方案。关键词:单片机;DS18B20 ;LabVIEW;串行通信 Abstract : Temperature is a very important criterion of air condition system′s comfort , so it is very significant to measure it accurately and real timely. This paper int roduces a data acquisition system of measuring 40 point s temperature for air condition room based on single wire digital sensor DS18B20 and microcont roller AT89C51 which are composed of rectangle measuring meshwork. The data communication between LabVIEW and microcont roller is executed via serial port ,and the temperature field data of air condition room are processed analyzed and displayed on LabVIEW. The hardware and software modules are also given in detail.Keywords : single chip ;DS18B20 ;LabVIEW; serial communication

    标签: LabVIEW 单片机 空调 温度场

    上传时间: 2014-05-05

    上传用户:KSLYZ

  • AT89C51单片机温度控制系统

    AT89C51单片机温度控制系统:本系统以AT89C51单片机系统为控制核心,用线性度好 灵敏度高的集成温度传感器AD590及分辨率高、噪声低的A/D转换器进行温度采集,采用线性数字校正和数字滤波技术,增强系统的灵敏度和抗干扰能力。关键词:温度测控;单片机;PID控制 温度测控系统结构框图如图1所示,设计中假定被控对象为lL净水,采用lkW 电炉进行加热。本设计主要以微控制器为控制核心,利用PID控制算法进行水温度的恒温控制。

    标签: 89C C51 AT 89

    上传时间: 2013-10-31

    上传用户:小儒尼尼奥

  • 基于uPSD3200 的人机对话设计

    基于uPSD3200 的人机对话设计:在介绍具有USB、I2C、ADC、DDC 和PWM 功能并嵌入8032 控制器内核的!PSD3200 单片机的基础上, 重点分析利用!PSD3200 单片机与内嵌SSD1303 驱动芯片的超薄OLED 显示屏P09703的硬件连接和软件编程, 同时给出利用!PSD3200 单片机一个A/D 口实现32 个按键的原理图, 从而实现完整的人机对话设计。关键词: OLED SSD1303 !PSD3200 单片机

    标签: uPSD 3200 人机对话

    上传时间: 2014-04-16

    上传用户:born2007

  • 51单片机动态LED显示电路编程实例

    51单片机动态LED显示电路编程实例:上一节我们讲述了单只LED与单片机的接口电路及编程实例,目的在于让初学者了解LED在单片机中的应用原理,单只LED显示在实际应用中并无多大用途,一般都是多位的LED显示。现在我们作进一步学习,我们要讲解的是8位LED的显示原理及实际的编程方法。这里我们没有采用多I/O口的8051系列单片机,而是采用了完全兼容C51指令系统的质优价廉的AT89C2051单片机,它的软件编程与C51完全一致。    在多数的应用场合中,我们并不希望使用多I/O端口的单片机,原则上是使用尽量少引脚的器件。在没有富余端口的情况下,怎样通过扩展电路达到预期的目的呢?我们希望通过此例使设计人员在实际应用中了解一点电路扩展的原理,对实际的应用有所帮助。 此电路中,74LS273用于驱动LED的8位段码,8位LED相应的"a"—"g"段连在一起,它们的公共端分别连至由74LS138(点击芯片型号可浏览其详细的技术手册)译码选通后经74LS04反相驱动的输出端。这样当选通某一位LED时,相应的地址线(74LS04输出端)输出的是高电平,所以我们的LED选用共阳LED数码管。    动态扫描的频率有一定的要求,频率太低,LED将出现闪烁现象。如频率太高,由于每个LED点亮的时间太短,LED的亮度太低,肉眼无法看清,所以一般均取几个ms左右为宜,这就要求在编写程序时,选通某一位LED使其点亮并保持一定的时间,程序上常采用的是调用延时子程序。在C51指令中,延时子程序是相当简单的,并且延时时间也很容易更改,可参见程序清单中的DELAY延时子程序。    为简单起见,我们只是编写了8位LED同步显示"00000000"—"11111111"直到"99999999"数字,并且反复循环。程序很简单,流程图略去。

    标签: LED 51单片机 动态 显示电路

    上传时间: 2013-11-18

    上传用户:皇族传媒

  • 用PIC16C73 单片机实现十二位A/D转换器

    介绍用PIC16C73 自带的八位A/D 转换器扩展为十二位A/D 转换器,给出了具体的设计方案和程序流程。它是用以 PIC16C73 为MCU 构成的海水有机磷测控仪A/D 转换部分的一种解决方案。为监测海洋生态环境,研制了用于海水有机磷农药现场监测的生物传感器。为测定生物传感器的信号,使传感器可用于船载及台站的海洋生态环境现场自动监测,需要对整个的采样和排液装置进行控制以及对传感器来的信号进行实时采集处理,形成有机磷的浓度传给上位机。为此,开发了以PIC16C73 单片机为核心的小型测控仪器,很好的完成了上述功能。PIC1673 单片机自带8 位的A/D 转换器,但不能满足系统对精度的要求,本设计在单片机自带8 位A/D 基础上加少量的硬件和软件开销,使其扩展为十二位A/D 转换器,满足了系统的要求。

    标签: PIC 16C C73 16

    上传时间: 2013-10-30

    上传用户:a296386173

  • 深入浅出AVR单片机--从ATMega48/88/168开始

    深入浅出AVR单片机思路清晰,以AVR单片机为载体,介绍了初学单片机所必须掌握的专业知识。书中语言严谨但不乏幽默风趣,配以大量的照片、图示和实例程序,使读者在愉悦中完成专业知识的学习,并培养了学习嵌入式系统的兴趣。本书在讲述AVR单片机的同时,更注重于对读者学习和设计能力的启发、培养,帮助他们养成“从实践中来,到实践中去”的科学方法论,为进一步的学习创造了基础。  本书讲述浅显、内容丰富、编排合理、实例详尽。首先介绍了如何阅读器件资料的方法,然后熟悉ICCAVR集成开发环境并搭建实验开发装置,接着从实际应用出发,启发式地介绍AVR单片机的常用资源和对应软件方法,最后较为全面地补充了从事嵌入式系统开发要扩展的软件知识。 第1篇 Are you ready? 第1章 学会阅读Datasheet  1.1 如何阅读PDF文件,如何获得Datasheet文件  1.2 Datasheet告诉我们些什么  1.3 如何看懂AVR的Datasheet  1.4 如何得到帮助  1.5 汇编语言执行时间的计算方法  1.6 ATmega48/88/168常用熔丝的作用及其配置方法  1.7 对误烧写为外部时钟模式的解锁方法  实例1 阅读74HC595 Datasheet 第2章 深入开发环境  2.1 认识ICC编译环境  2.2 事半功倍的代码生成器  2.3 ICC之不得不说的故事  2.4 AVR最小系统和下载线DIY  实例2 AVR最小系统DIY第2篇 Let\'s go! 第3章 从跑马灯开始  3.1 输入/输出界面   3.1.1 单片机的输入/输出设备——引脚   3.1.2 “芯”里有数——数码管显示   3.1.3 单片机的输入/输出设备——从按键到键盘  3.2 用ATmega48/88/168单片机端口驱动数码管  3.3 操纵ATmega48/88/168单片机端口  3.4 端口内建上拉电阻的使用  3.5 端口位操作  实例3 跑马灯  实例4 数码管的显示(上)  实例5 数码管的显示(下)  实例6 矩阵键盘 第4章 对不起接个电话  4.1 十万火急——中断  4.2 中断的特性  4.3 使用中断时的注意事项  4.4 ATmega48/88/168单片机有哪些中断源  4.5 如何编写一个中断的服务程序代码  4.6 ATmega48/88/168单片机中断的开关控制  4.7 ATmega48/88/168中断标志位  4.8 ATmega48/88/168中断优先级  4.9 ATmega48/88/168单片机中断向量  4.10 中断与查询之争  4.11 用查询方式响应外设中断  4.12 中断误触发  4.13 前后台与原子操作  实例7 中断唤醒的键盘扫描  实例8 旋转编码器 第5章 一秒究竟有多长  5.1 单片机与时间  5.2 软件延时  5.3 不需要加载的“自由计时器”  5.4 通过重加载控制定时中断周期  5.5 使用代码生成器生成定时器1初始化代码  5.6 定时器的其他工作模式  5.7 PWM波及其应用简介  5.8 人类能看懂的电子时钟——实时时钟简介  实例9 闪烁的灯  实例10 渐明渐暗的灯  实例11 复杂闪烁控制 第6章 电量低  6.1 从猜数游戏到A/D转换器  6.2 ATmega48/88/168的A/D转换器  6.3 ATmega48/88/168单片机中与A/D相关的引脚  6.4 ATmega48/88/168单片机中与A/D相关的寄存器  6.5 使用A/D时需要注意些什么  6.6 怎样知道A/D转换完成  6.7 读取A/D的转换结果  6.8 使用代码生成器生成ADC初始化代码  6.9 书写具有工程结构的初始化代码  6.10 电量计原理概述  …… 第7章 正在过收费站 第8章 包装的学问 第9章 傻孩子求职记 第10章 MISSION UPDATE第3篇 Code Name C 第11章 朝花夕拾 第12章 指针都是纸老虎 第13章 来自身边的启示 第14章 初识嵌入式系统

    标签: ATMega AVR 168 48

    上传时间: 2014-05-05

    上传用户:佳期如梦

  • 水位监测报警系统原理

    摘要:本水位监测报警器使用5V低压直流电源(也可以用3节5号电池代替)就可以对5~15厘米的水位进行监测,用LED显示和数码管显示水位,并可以对不再此范围内的水位发出报警。主要采用CD4066、74LS86、74LS32、CD4511芯片,再加上数码管、蜂鸣器、发光二极管、电阻这些器件组成一个简单而灵敏的监测报警电路,操作简单,接通电源即可工作。因为大部分电路采用数字电路,所以本水位监测报警器还具有耗能低、准确性高的特点。关键字:译码电路    报警电路    监测电路 Abstract: The water level alarm monitoring the use of 5 V low-voltage DC power (can also use three batteries replaced on the 5th) will be able to 5 to 15 centimeters of water level monitoring, with LED display and digital display of water level, and this can no longer Within the scope of a water level alarm. Mainly CD4066, 74LS86, 74LS32, CD4511 chips, coupled with digital control, buzzer, light-emitting diode, the resistance of these devices composed of a simple and sensitive monitoring alarm circuits. Because the majority of circuits using digital circuitry, so the water level monitored alarm system also has low energy consumption, high accuracy of the characteristics. Keyword: Decoding circuit alarm circuit monitoring circuit

    标签: 水位 监测报警 系统原理

    上传时间: 2013-11-05

    上传用户:王庆才