#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
非均匀有理b样条曲线nurbs的C++源码库。 3.0.11版
上传时间: 2015-04-24
上传用户:Miyuki
Haskell 中文教程1-3章(flw译) 纯粹的函数型编程语言。以著名逻辑学家 Haskell B. Curry 的名字命名。 最初的目的是想要设计出满足下面这些要求的语言: 1,它必须能够适合教学、研究、应用开发,包括一些大系统的构造。 2,它必须能够使用形式语言来准确描述。 3,它必须是自由免费的,任何人只要愿意都可以获取、使用和再次发布它。 4,它必须建立在大家一致认可的基础上。 5,它应该能够消除目前的函数型编程语言的差异。
上传时间: 2014-01-10
上传用户:685
Delphi2005 BS程序设计技巧集 (1-3) 现在delphi 2005 B/S的书籍资料太少,几乎没有可参考的资料,这在一定程度上限制了delphi 2005的使用,相反C#,ASP的书籍资料到处都是。通过几个月的学习也算是总结了一点经验,从现在起我将陆续将ASP和C#的例子、技巧翻译到delphi 2005下面,希望对大家的学习和工作有帮助,毕竟.Net是一种发展趋势。我将不定期写新的内容,同时,如果你在工作或学习中有什么问题,我也会将问题加入本篇文章,另外,一个人的能力毕竟有限,也希望大家共同来解决问题。 宋雨炫
上传时间: 2013-11-25
上传用户:lgnf
车牌定位---VC++源代码程序 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2013-11-26
上传用户:懒龙1988
s平面中直接形式到级联形式的转换 %适合模拟滤波器的 %C为增益系数 %B为包含各bk的K乘3维实系数矩阵 %A为包含各ak的K乘3维实系数矩阵 %b为直接形式的分子多项式系数 %a为直接形式的分母多项式系数
上传时间: 2015-07-22
上传用户:sdq_123
%直接型到并联型的转换 % %[C,B,A]=dir2par(b,a) %C为当b的长度大于a时的多项式部分 %B为包含各bk的K乘2维实系数矩阵 %A为包含各ak的K乘3维实系数矩阵 %b为直接型分子多项式系数 %a为直接型分母多项式系数 %
上传时间: 2014-01-20
上传用户:lizhen9880
直接型到级联型的形式转换 % [b0,B,A]=dir2cas(b,a) %b 为直接型的分子多项式系数 %a 为直接型的分母多项式系数 %b0为增益系数 %B 为包含各bk的K乘3维实系数矩阵 %A 为包含各ak的K乘3维实系数矩阵 %
上传时间: 2013-12-30
上传用户:agent
1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2014-01-08
上传用户:songrui
区域增长的算法实现: 1)根据图像的不同应用选择一个或一组种 子,它或者是最亮或最暗的点,或者是位 于点簇中心的点 2...通过像素集合的区域增长 算法实现: 区域A 区域B 种子像素增长.3)增长的规则 4) 结束条件.
上传时间: 2015-09-30
上传用户:wcl168881111111