CAM350软件的学习笔记目录1. CAM3501. 一. Gerber知识2. 二.CAM3503. 三.CAM350操作4. 附录Gerber知识l Gerber 文件的格式包括:¡ RS-274-X (常用)¡ RS-274-D (常用)¡ RS-274¡ Fire 9000¡ Mda 9000¡ Barco DPFl 标准的gerber file 格式可分为RS-274 与RS-274X 两种,其不同在于:¡ RS-274 格式的gerber file 与aperture 是分开的不同文件。¡ RS-274X 格式的aperture 是整合在gerber file 中的,因此不需要aperture文件(即,内含D 码)。PCB生成Gerber最好就是选用RS-274x格式,既标准,又兼容性高。l 数据格式:整数位+小数位 。常用:¡ 3:3(公制,整数3 位,小数3 位)¡ 2:4(英制,整数2 位,小数4 位)¡ 2:3(英制,整数2 位,小数3 位)¡ 3:3(英制,整数3 位,小数3 位)l 前导零、后导零和不导零:¡ 例:025690 前导零后变为:25690 (Leading)¡ 025690 后导零后变为:02569 (Trailing)¡ 025690 不导零后变为:025690 (None)l 单位:¡ METRIC(mm)¡ ENGLISH(inch or mil)l 单位换算:¡ 1 inch = 1000 mil = 2.54 cm = 25.4 mm¡ 1 mm = 0.03937 inch = 39.37 mill GERBER 格式的数据特点:
上传时间: 2013-10-19
上传用户:wayne595
设计了一种用于高速ADC中的全差分套筒式运算放大器.从ADC的应用指标出发,确定了设计目标,利用开关电容共模反馈、增益增强等技术实现了一个可用于12 bit精度、100 MHz采样频率的高速流水线(Pipelined)ADC中的运算放大器.基于SMIC 0.13 μm,3.3 V工艺,Spectre仿真结果表明,该运放可以达到105.8 dB的增益,单位增益带宽达到983.6 MHz,而功耗仅为26.2 mW.运放在4 ns的时间内可以达到0.01%的建立精度,满足系统设计要求.
上传时间: 2013-10-16
上传用户:563686540
现代的电子设计和芯片制造技术正在飞速发展,电子产品的复杂度、时钟和总线频率等等都呈快速上升趋势,但系统的电压却不断在减小,所有的这一切加上产品投放市场的时间要求给设计师带来了前所未有的巨大压力。要想保证产品的一次性成功就必须能预见设计中可能出现的各种问题,并及时给出合理的解决方案,对于高速的数字电路来说,最令人头大的莫过于如何确保瞬时跳变的数字信号通过较长的一段传输线,还能完整地被接收,并保证良好的电磁兼容性,这就是目前颇受关注的信号完整性(SI)问题。本章就是围绕信号完整性的问题,让大家对高速电路有个基本的认识,并介绍一些相关的基本概念。 第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1066.2 源同步时序系统.......................................................................................1086.2.1 源同步系统的基本结构...................................................................1096.2.2 源同步时序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由来...................................................................................... 1137.2 IBIS 与SPICE 的比较.............................................................................. 1137.3 IBIS 模型的构成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相关工具及链接..............................................................................120第八章 高速设计理论在实际中的运用.............................................................1228.1 叠层设计方案...........................................................................................1228.2 过孔对信号传输的影响...........................................................................1278.3 一般布局规则...........................................................................................1298.4 接地技术...................................................................................................1308.5 PCB 走线策略............................................................................................134
标签: 信号完整性
上传时间: 2014-05-15
上传用户:dudu1210004
第一部分 信号完整性知识基础.................................................................................5第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1063.2 高速设计的问题.......................................................................................2093.3 SPECCTRAQuest SI Expert 的组件.......................................................2103.3.1 SPECCTRAQuest Model Integrity .................................................2103.3.2 SPECCTRAQuest Floorplanner/Editor .........................................2153.3.3 Constraint Manager .......................................................................2163.3.4 SigXplorer Expert Topology Development Environment .......2233.3.5 SigNoise 仿真子系统......................................................................2253.3.6 EMControl .........................................................................................2303.3.7 SPECCTRA Expert 自动布线器.......................................................2303.4 高速设计的大致流程...............................................................................2303.4.1 拓扑结构的探索...............................................................................2313.4.2 空间解决方案的探索.......................................................................2313.4.3 使用拓扑模板驱动设计...................................................................2313.4.4 时序驱动布局...................................................................................2323.4.5 以约束条件驱动设计.......................................................................2323.4.6 设计后分析.......................................................................................233第四章 SPECCTRAQUEST SIGNAL EXPLORER 的进阶运用..........................................2344.1 SPECCTRAQuest Signal Explorer 的功能包括:................................2344.2 图形化的拓扑结构探索...........................................................................2344.3 全面的信号完整性(Signal Integrity)分析.......................................2344.4 完全兼容 IBIS 模型...............................................................................2344.5 PCB 设计前和设计的拓扑结构提取.......................................................2354.6 仿真设置顾问...........................................................................................2354.7 改变设计的管理.......................................................................................2354.8 关键技术特点...........................................................................................2364.8.1 拓扑结构探索...................................................................................2364.8.2 SigWave 波形显示器........................................................................2364.8.3 集成化的在线分析(Integration and In-process Analysis) .236第五章 部分特殊的运用...............................................................................2375.1 Script 指令的使用..................................................................................2375.2 差分信号的仿真.......................................................................................2435.3 眼图模式的使用.......................................................................................249第四部分:HYPERLYNX 仿真工具使用指南............................................................251第一章 使用LINESIM 进行前仿真.......................................................................2511.1 用LineSim 进行仿真工作的基本方法...................................................2511.2 处理信号完整性原理图的具体问题.......................................................2591.3 在LineSim 中如何对传输线进行设置...................................................2601.4 在LineSim 中模拟IC 元件.....................................................................2631.5 在LineSim 中进行串扰仿真...................................................................268第二章 使用BOARDSIM 进行后仿真......................................................................2732.1 用BOARDSIM 进行后仿真工作的基本方法...................................................2732.2 BoardSim 的进一步介绍..........................................................................2922.3 BoardSim 中的串扰仿真..........................................................................309
上传时间: 2014-04-18
上传用户:wpt
PCB 布线原则连线精简原则连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电流(导线厚50um,允许温升10℃)导线宽度(Mil) 导线电流(A) 其中:K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;T 为最大温升,单位为℃;A 为覆铜线的截面积,单位为mil(不是mm,注意);I 为允许的最大电流,单位是A。电磁抗干扰原则电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下:1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。2、 数字地与模拟地分开若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。3、 接地线应尽量加粗若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm 以上。4、 接地线构成闭环路只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。二、 配置退藕电容PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是:?电电源的输入端跨½10~100uf的的电解电容器,如果印制电路板的位置允许,采Ó100uf以以上的电解电容器抗干扰效果会更好¡���?原原则上每个集成电路芯片都应布置一¸0.01uf~`0.1uf的的瓷片电容,如遇印制板空隙不够,可Ã4~8个个芯片布置一¸1~10uf的的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。���?对对于抗噪能力弱、关断时电源变化大的器件,ÈRA、¡ROM存存储器件,应在芯片的电源线和地线之间直接接入退藕电容¡���?电电容引线不能太长,尤其是高频旁路电容不能有引线¡三¡过过孔设¼在高ËPCB设设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到£���?从从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如¶6- 10层层的内存模¿PCB设设计来说,选Ó10/20mi((钻¿焊焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使Ó8/18Mil的的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径µ6倍倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗¡���?使使用较薄µPCB板板有利于减小过孔的两种寄生参数¡���? PCB板板上的信号走线尽量不换层,即尽量不要使用不必要的过孔¡���?电电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好¡���?在在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地过孔¡四¡降降低噪声与电磁干扰的一些经Ñ?能能用低速芯片就不用高速的,高速芯片用在关键地方¡?可可用串一个电阻的方法,降低控制电路上下沿跳变速率¡?尽尽量为继电器等提供某种形式的阻尼,ÈRC设设置电流阻尼¡?使使用满足系统要求的最低频率时钟¡?时时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地¡?用用地线将时钟区圈起来,时钟线尽量短¡?石石英晶体下面以及对噪声敏感的器件下面不要走线¡?时时钟、总线、片选信号要远ÀI/O线线和接插件¡?时时钟线垂直ÓI/O线线比平行ÓI/O线线干扰小¡? I/O驱驱动电路尽量靠½PCB板板边,让其尽快离¿PC。。对进ÈPCB的的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射¡? MCU无无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空¡?闲闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端¡?印印制板尽量使Ó45折折线而不Ó90折折线布线,以减小高频信号对外的发射与耦合¡?印印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些¡?单单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗¡?模模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟¡?对¶A/D类类器件,数字部分与模拟部分不要交叉¡?元元件引脚尽量短,去藕电容引脚尽量短¡?关关键的线要尽量粗,并在两边加上保护地,高速线要短要直¡?对对噪声敏感的线不要与大电流,高速开关线并行¡?弱弱信号电路,低频电路周围不要形成电流环路¡?任任何信号都不要形成环路,如不可避免,让环路区尽量小¡?每每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容¡?用用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地¡?对对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰¡?信信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间¡环境效应原Ô要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等¡安全工作原Ô要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超¹500平平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误£SMD器器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一¸Track到到铜箔,以防止受热不均造成的应力集Ö而导致虚焊£PCB上上如果有¦12或或方Ð12mm以以上的过孔时,必须做一个孔盖,以防止焊锡流出等。经济原则遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例È5mil的的线做腐蚀要±8mil难难,所以价格要高,过孔越小越贵等热效应原则在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小Ó2c,,而且器件在印制板上的排列方式应遵循一定的规则£同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集³电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却Æ流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置£以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的µ部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局¡设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段¡
上传时间: 2013-11-24
上传用户:气温达上千万的
#include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,
上传时间: 2013-10-21
上传用户:13788529953
技术相关信息 · 工具信息 · FAQs · 应用范例 -HA0003S HT48 & HT46 MCU 与 HT93LC46 的通信 -HA0004S HT48 & HT46 MCU UART 的软件实现方法 -HA0013S HT48 & HT46 MCU LCM 接口设计 -HA0021S HT48 MCU输入/输出口的使用 -HA0055S 2^12 Decoder (8+4, 对应 HT12E)
上传时间: 2013-10-16
上传用户:二十八号
4.1 编程的步骤、方法和技巧4.1.2 编程的方法和技巧 4.1.3 汇编语言程序的基本结构 4.2 汇编语言源程序的编辑和汇编 4.2.1 源程序编辑 4.2.2 源程序的汇编 4.2.3 伪指令 计算机在完成一项工作时,必须按顺序执行各种操作。这些操作是程序设计人员用计算机所能接受的语言把解决问题的步骤事先描述好的,也就是事先编好计算机程序,再由计算机去执行。汇编语言程序设计,要求设计人员对单片机的硬件结构有较详细的了解。编程时,对数据的存放、寄存器和工作单元的使用等要由设计者安排;而高语言程序设计时,这些工作是由计算机软件完成的,程序设计人员不必考虑。 4.1.1 编程步骤 一、分析问题 首先,要对需要解决的问题进行分析,以求对问题有正确的理解。例如,解决问题的任务是什么?工作过程是什么?现有的条件,已知的数据,对运算的精确和速度方面的要求是什么?设计的硬件结构是否方便编程等等。 二、确定算法 算法就是如何将实际问题转化成程序模块来处理。 解决一个问题,常常有几种可选择的方法。从数学角度来描述,可能有几种不同的算法。在编制程序以前,先要对不同的算法进行分析、比较,找出最适宜的算法。 ? 三、画程序流程图 程序流程图是使用各种图形、符号、有向线段等来说明程序设计过程的一种直观的表示,常采用以下图形及符号:椭圆框( )或桶行框( )表示程序的开始或结束。 矩形框( )表示要进行的工作。 菱形框( )表示要判断的事情,菱形框内的表达式表示要判断的内容。 圆圈( )表示连接点。 指向线(→)表示程序的流向。 流程图步骤分得越细致,编写程序时也就越方便。
上传时间: 2013-10-10
上传用户:18888888888
基于M CORE微控制器的嵌入式系统从应用的角度出发,全面介绍了构成嵌人式系统的微控制器的结构和常用支撑硬件的原理以及设计开发方法。本书共 24章,分为3大部分。第 1部分(第 1~14章)介绍具有 32位 RISC CPU核的M·CORE微控制器的结构及原理,按模块分章,对各功能模块的原理及使用方法都有详尽的讲解。众所周知,微控制器种类繁多,虽然不同种类微控制器的CPU及内部功能模块有所不同,但基本原理(尤其是一些通用的功能)是一致的。第2部分(第15—19章)介绍嵌入式系统常用外围电路的原理及设计和使用方法,包括有:异步串行接口的互连及应用举例、同步串行总线及应用举例、液晶显示模块、液晶控制器、触摸屏及触摸屏控制器和各类存储器的应用举例。第3部分(第20—24章)介绍嵌人式系统的开发环境与软件开发,在讨论嵌人式系统软件开发的一般过程和开发工具需求的基础上,介绍M·CORE软件开发支持工具集、MMC2107微控制器评估板、M·CORE常用工具软件、QodeWarrior集成开发环境IDE及M·CORE的基本程序设计技术。 第1部分 M·COREM控制器的结构及原理 第1章 微控制器及其应用技术概述 1.1 微控制器的特点 1.2 微控制器技术的发展 1.3 M·CORE系列微控制器 l.3.1 MMC2107的特点及组成 1.3.2 MMC2107的引脚描述 1.3.3 MMC2107的系统存储器地址映射 第2章 M·CORE M210中央处理单元(CPU) 2.1 M·CORE处理器综述 2.1.1 M·CORE处理器的微结构 2.1.2 M·CORE处理器的编程模型 2.1.3 M·CORE的数据格式 2.1.4 M·CORE处理器的寄存器 2.2 M·CORE处理器指令系统简述 2. 2.l 指令类型和寻址方式
上传时间: 2013-10-28
上传用户:lhw888
PC机之间串口通信的实现一、实验目的 1.熟悉微机接口实验装置的结构和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.学会串行通信程序的编制方法。 二、实验内容与要求 1.基本要求主机接收开关量输入的数据(二进制或十六进制),从键盘上按“传输”键(可自行定义),就将该数据通过8251A传输出去。终端接收后在显示器上显示数据。具体操作说明如下:(1)出现提示信息“start with R in the board!”,通过调整乒乓开关的状态,设置8位数据;(2)在小键盘上按“R”键,系统将此时乒乓开关的状态读入计算机I中,并显示出来,同时显示经串行通讯后,计算机II接收到的数据;(3)完成后,系统提示“do you want to send another data? Y/N”,根据用户需要,在键盘按下“Y”键,则重复步骤(1),进行另一数据的通讯;在键盘按除“Y”键外的任意键,将退出本程序。2.提高要求 能够进行出错处理,例如采用奇偶校验,出错重传或者采用接收方回传和发送方确认来保证发送和接收正确。 三、设计报告要求 1.设计目的和内容 2.总体设计 3.硬件设计:原理图(接线图)及简要说明 4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法) 四、8251A通用串行输入/输出接口芯片由于CPU与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有“接收移位寄存器”(串→并)和“发送移位寄存器”(并→串)。能够完成上述“串←→并”转换功能的电路,通常称为“通用异步收发器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A异步工作方式:如果8251A编程为异步方式,在需要发送字符时,必须首先设置TXEN和CTS#为有效状态,TXEN(Transmitter Enable)是允许发送信号,是命令寄存器中的一位;CTS#(Clear To Send)是由外设发来的对CPU请求发送信号的响应信号。然后就开始发送过程。在发送时,每当CPU送往发送缓冲器一个字符,发送器自动为这个字符加上1个起始位,并且按照编程要求加上奇/偶校验位以及1个、1.5个或者2个停止位。串行数据以起始位开始,接着是最低有效数据位,最高有效位的后面是奇/偶校验位,然后是停止位。按位发送的数据是以发送时钟TXC的下降沿同步的,也就是说这些数据总是在发送时钟TXC的下降沿从8251A发出。数据传输的波特率取决于编程时指定的波特率因子,为发送器时钟频率的1、1/16或1/64。当波特率指定为16时,数据传输的波特率就是发送器时钟频率的1/16。CPU通过数据总线将数据送到8251A的数据输出缓冲寄存器以后,再传输到发送缓冲器,经移位寄存器移位,将并行数据变为串行数据,从TxD端送往外部设备。在8251A接收字符时,命令寄存器的接收允许位RxE(Receiver Enable)必须为1。8251A通过检测RxD引脚上的低电平来准备接收字符,在没有字符传送时RxD端为高电平。8251A不断地检测RxD引脚,从RxD端上检测到低电平以后,便认为是串行数据的起始位,并且启动接收控制电路中的一个计数器来进行计数,计数器的频率等于接收器时钟频率。计数器是作为接收器采样定时,当计数到相当于半个数位的传输时间时再次对RxD端进行采样,如果仍为低电平,则确认该数位是一个有效的起始位。若传输一个字符需要16个时钟,那么就是要在计数8个时钟后采样到低电平。之后,8251A每隔一个数位的传输时间对RxD端采样一次,依次确定串行数据位的值。串行数据位顺序进入接收移位寄存器,通过校验并除去停止位,变成并行数据以后通过内部数据总线送入接收缓冲器,此时发出有效状态的RxRDY信号通知CPU,通知CPU8251A已经收到一个有效的数据。一个字符对应的数据可以是5~8位。如果一个字符对应的数据不到8位,8251A会在移位转换成并行数据的时候,自动把他们的高位补成0。 五、系统总体设计方案根据系统设计的要求,对系统设计的总体方案进行论证分析如下:1.获取8位开关量可使用实验台上的8255A可编程并行接口芯片,因为只要获取8位数据量,只需使用基本输入和8位数据线,所以将8255A工作在方式0,PA0-PA7接实验台上的8位开关量。2.当使用串口进行数据传送时,虽然同步通信速度远远高于异步通信,可达500kbit/s,但由于其需要有一个时钟来实现发送端和接收端之间的同步,硬件电路复杂,通常计算机之间的通信只采用异步通信。3.由于8251A本身没有时钟,需要外部提供,所以本设计中使用实验台上的8253芯片的计数器2来实现。4:显示和键盘输入均使用DOS功能调用来实现。设计思路框图,如下图所示: 六、硬件设计硬件电路主要分为8位开关量数据获取电路,串行通信数据发送电路,串行通信数据接收电路三个部分。1.8位开关量数据获取电路该电路主要是利用8255并行接口读取8位乒乓开关的数据。此次设计在获取8位开关数据量时采用8255令其工作在方式0,A口输入8位数据,CS#接实验台上CS1口,对应端口为280H-283H,PA0-PA7接8个开关。2.串行通信电路串行通信电路本设计中8253主要为8251充当频率发生器,接线如下图所示。
上传时间: 2013-12-19
上传用户:小火车啦啦啦