此汇编程序实现A/D转换功能,应用于pic单片机上,A/D采用中断方式。该程序通过单片机的RA2模拟通道送入一直流电压,当送入的直流电压大于2.5V时,8个LED闪动,当直流电压恢复到2.5V以下时,LED停止闪动。为了防止干扰,本程序对直流电压采样10次后再作判断,中间的采样结 果用间接寻址的方式存取。
上传时间: 2013-12-19
上传用户:xauthu
薛超英数据结构实习一答案 设有n个人站成一圈,每个人持有一个密码(正整数)。现从第t个人开始,按顺时针方向“1,2,3,4,…”循环报数,数到m1(第t个人所持密码)的人出列,然后从出列者的下一个人重新开始报数,数到m2(刚出列者所持密码)的人又出列,如此重复进行,直到n个人都出列为止。 问题是:对于任意给定的n个人的原始排列顺序,求出n个人的出列顺序。 输入数据从文本文件“实习1数据.txt”中读取。该文件有两行:第1行只有一个整数,表示报数的起始位置;第2行是n个所持密码。 输出结果显示在屏幕上。 例如,从文本文件读取数据 2 5 6 3 2 2 4 屏幕显示 1 6 5 3 4 2
上传时间: 2014-01-05
上传用户:thuyenvinh
键盘驱动,可以用在三星的s3c2440上面。内核是2。6。13
标签: 键盘驱动
上传时间: 2014-01-09
上传用户:ruan2570406
鼠标驱动,可以用在三星的s3c2440上面。内核是2。6。13
上传时间: 2013-12-17
上传用户:sjyy1001
led驱动,可以用在三星的s3c2440上面。内核是2。6。13
上传时间: 2013-12-21
上传用户:zl5712176
触摸屏驱动,可以用在三星的s3c2440上面。内核是2。6。13
上传时间: 2013-12-23
上传用户:JasonC
Implementation of Edmonds Karp algorithm that calculates maxFlow of graph. Input: For each test case, the first line contains the number of vertices (n) and the number of arcs (m). Then, there exist m lines, one for each arc (source vertex, ending vertex and arc weight, separated by a space). The nodes are numbered from 1 to n. The node 1 and node n should be in different sets. There are no more than 30 arcs and 15 nodes. The arc weights vary between 1 and 1 000 000. Output: The output is a single line for each case, with the corresponding minimum size cut. Example: Input: 7 11 1 2 3 1 4 3 2 3 4 3 1 3 3 4 1 3 5 2 4 6 6 4 5 2 5 2 1 5 7 1 6 7 9 Output: 5
标签: Implementation calculates algorithm Edmonds
上传时间: 2014-01-04
上传用户:kiklkook
有关MPSK调制,传输模型。成型脉冲分为矩形,升余弦脉冲,平方根升余弦脉冲。M的值为2,4和8.所加噪声是高斯白噪声。
上传时间: 2017-09-09
上传用户:JIUSHICHEN
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789