梯形公式计算面积近似值:In=Tn=h/2(f(a)+f(b)) 变长梯形面积:T2n=Tn/2+h/2∑f(Xk+h/2) 辛普生面积:I2n=(4T2n-Tn)/3
上传时间: 2016-01-06
上传用户:qw12
问题描述 序列Z=<B,C,D,B>是序列X=<A,B,C,B,D,A,B>的子序列,相应的递增下标序列为<2,3,5,7>。 一般地,给定一个序列X=<x1,x2,…,xm>,则另一个序列Z=<z1,z2,…,zk>是X的子序列,是指存在一个严格递增的下标序列〈i1,i2,…,ik〉使得对于所有j=1,2,…,k使Z中第j个元素zj与X中第ij个元素相同。 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。 你的任务是:给定2个序列X、Y,求X和Y的最长公共子序列Z。
上传时间: 2014-01-25
上传用户:netwolf
程序计算了国产矩形波导BJ-100的传输特性。通过查阅资料可以知道BJ-100波导管的结构参数为频率范围(8.2GHz~12.5GHz)结构参数a=22.86mm,b=10.16mm FDTD计算 fortran 语言
上传时间: 2014-12-02
上传用户:linlin
n皇后问题求解(8<=n<=1000) a) 皇后个数的设定 在指定文本框内输入皇后个数即可,注意: 皇后个数在8和1000 之间(包括8和1000) b) 求解 点击<Solve>按钮即可进行求解. c) 求解过程显示 在标有Total Collision的静态文本框中将输出当前棋盘上的皇后总冲突数. 当冲突数降到0时,求解完毕. d) 求解结果显示 程序可以图形化显示8<=n<=50的皇后求解结果. e) 退出程序,点击<Exit>即可退出程序.
上传时间: 2016-01-28
上传用户:ztj182002
% SSOR预处理的共轭梯度法求解方程Ax=b % 输入参数说明 % A 正定矩阵[n*n] % b 右边向量 % omega SSOR预处理参数(0--2) % Times 迭代次数 % errtol 给定误差终止条件 % %输出参数 % NewX 方程Ax=b的x近似解 % avgerr 求解的当前平均绝对误差
上传时间: 2013-12-19
上传用户:一诺88
(1)利用多项式拟合的两个模块程序求解下题: 给出 x、y的观测值列表如下: x 0 1 2 3 4 5 y 2.08 7.68 13.8 27.1 40.8 61.2 试利用二次多项式y=a0+a1x+a2x2进行曲线拟合。 (1)多项式拟合方法:假设我们收集到两个相关变量x、y的n对观测值列表: x x0 x1 x2 x3 x4 x5 y y0 y1 y2 y3 y4 y5 我们希望用m+1个基函数w0(x),w1(x),…,wm(x)的一个线形组合 y=a0w0(x)+a1w1(x)+…+amwm(x) 来近似的表达x、y间的函数关系,我们把几对测量值分别代入上式中,就可以得到一个线形方程组: a0w0(x0)+a1w1(x0)+…+amwm(x0)=y0 a0w0(x1)+a1w1(x1)+…+amwm(x1)=y1 … … a0w0(xn)+a1w1(xn)+…+amwm(xn)=yn 只需要求出该线形方程组的最小二乘解,就能得到所构造的的多项式的系数,从而解决问题。
上传时间: 2016-02-07
上传用户:爺的气质
学生学籍管理系统(B/S)的设计与开发主要实现以下功能1.学生基本信息的管理; 2、学生增减; 3、课程管理:课程的增加、修改、删除、查询等; 4、基础数据管理.
上传时间: 2013-12-23
上传用户:二驱蚊器
小信号放大器的设计 1. 放大器是射频/微波系统的必不可少的部件。 2. 放大器有低噪声、小信号、高增益、中功率、大功率等。 3. 放大器按工作点分有A、AB、B、C、D…等类型。 4. 放大器指标有:频率范围、动态范围、增益、噪声系数、工作效率、1dB压缩点、三阶交调等。
上传时间: 2016-02-10
上传用户:ggwz258
Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法结束:dis即为所有点对的最短路径矩阵 3)算法小结:此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。时间复杂度O(n^3)。 考虑下列变形:如(I,j)∈E则dis[I,j]初始为1,else初始为0,这样的Floyd算法最后的最短路径矩阵即成为一个判断I,j是否有通路的矩阵。更简单的,我们可以把dis设成boolean类型,则每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”来代替算法描述中的蓝色部分,可以更直观地得到I,j的连通情况。
标签: Floyd-Warshall Shortest Pairs Paths
上传时间: 2013-12-01
上传用户:dyctj
第1章 概述.doc 第2章 物理层.doc 第3章 数据链路层.doc 第4章 信道共享技术.doc 第5章 局域网.doc 第6章 广域网.doc 第7章 网络互连.doc 第8章 运输层.doc
上传时间: 2014-01-26
上传用户:guanliya