虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

10.<b>2</b>

  • 血压计中仪表放大器的设计与制作

      为了检测血压测量系统中的微弱信号,采用由分立元件构成仪表放大器作为压力传感器前置放大器。运用Multsim对仪表放大器进行设计仿真,并对硬件电路安装调试。当输入信号带宽控制在10 Hz~2 kHz内,调节电位器RP可以使仪表放大器的增益可达90 dB。测试表明仪表放大器指标符合血压测量系统要求。

    标签: 血压计 仪表放大器

    上传时间: 2013-11-22

    上传用户:zhyiroy

  • 基于单片机烟感报警器的设计

    第1章 烟感报警器设计方案 …..3第2章 烟感报警器的硬件设计 42.1 系统总体电路设计 …52.2 传感器检测电路设计 62.3 烟感报警器显示及按键电路设计 82.4 单片机最小系统设计 8第3章 烟感报警器的软件设计 103.1系统程序流图 103.2系统程序 101第4章 烟感报警器课程设计总结 15参考文献 16

    标签: 单片机 报警

    上传时间: 2013-11-05

    上传用户:r5100

  • 单片机模糊逻辑控制

    单片机模糊模糊控制是目前在控制领域所采用的三种智能控制方法中最具实际意义的方法。模糊控制的采用解决了大量过去人们无法解决的问题,并且在工业控制、家用电器和各个领域已取得了令人触目的成效。本书是一本系统地介绍模糊控制的理论、技术、方法和应用的著作;内容包括模糊控制基础、模糊控制器、模糊控制系统、模糊控制系统的稳定性、模糊控制系统的开发软件,用单片微型机实现模糊控制的技术和方法,模糊控制在家用电器和工业上应用的实际例子;反映了模糊控制目前的水平。 单片机模糊模糊控制目录 : 第一章 模糊逻辑、神经网络集成电路的发展 1.1 模糊逻辑及其集成电路的发展1.1.1 模糊逻辑的诞生和发展1.1.2 模糊集成电路的发展进程1.2 神经网络及其集成电路的发展1.2.1 神经网络的形成历史1.2.2 神经网络集成电路的发展1.3 模糊逻辑和神经网络的结合1.3.1 模糊逻辑和神经网络结合的意义1.3.2 模糊逻辑和神经网络结合的前景第二章 模糊逻辑及其理论基础 2.1 模糊集合与隶属函数2.1.1 模糊集合概念2.1.2 隶属函数2.1.3 分解定理与扩张定理2.1.4 模糊数2.2 模糊关系、模糊矩阵与模糊变换2.2.1 模糊关系2.2.2 模糊矩阵2.2.3 模糊变换2.3模糊逻辑和函数2.3.1模糊命题2.3.2模糊逻辑2.3.3模糊逻辑函数2.4模糊语言2.4.1 语言及语言的模糊性2.4.2 模糊语言2.4.3 语法规则和算子2.4.4 模糊条件语句2.5 模糊推理2.5.1 模糊推理的CRI法2.5.2 模糊推理的TVR法2.5.3 模糊推理的直接法2.5.4 模糊推理的精确值法2.5.5 模糊推理的强度转移法第三章 模糊控制基础 3.1 模糊控制的系统结构3.2 精确量的模糊化3.2.1 语言变量的分档3.2.2 语言变量值的表示方法3.2.3 精确量转换成模糊量3.3 模糊量的精确化3.3.1 最大隶属度法3.3.2 中位数法3.3.3 重心法3.4 模糊控制规则及控制算法3.4.1 模糊控制规则的格式3.4.2 模糊控制规则的生成3.4.3 模糊控制规则的优化3.4.4 模糊控制算法3.5 模糊控制的神经网络方法3.5.1 神经元和神经网络3.5.2 神经网络的分布存储和容错性3.5.3 神经网络的学习算法3.5.4 神经网络实现的模糊控制3.5.5 神经网络构造隶属函数3.5.6 神经网络存储控制规则3.5.7 神经网络实现模糊化、反模糊化第四章 模糊控制器 4.1 模糊控制器结构4.2 模糊控制器设计4.2.1 常规模糊控制器设计4.2.2 变结构模糊控制器设计4.2.3 自组织模糊控制器设计4.2.4 自适应模糊控制器设计4.3 模糊控制器的数学模型4.3.1 常规模糊控制器的数学模型4.3.2 模糊控制器数学模型的建立第五章 模糊控制系统 5.1 模糊系统的辨识和建模5.1.1 模糊系统辨识的数学基础5.1.2 基于模糊关系方程的模糊模型辨识5.1.3 基于语言控制规则的模糊模型辨识5.2 模糊控制系统的设计5.2.1 模糊控制系统的一般设计过程5.2.2 模糊控制系统的典型设计5.3 模糊控制系统的稳定性5.3.1 稳定性分析的Lyapunov直接法5.3.2 语言规则描述的模糊控制系统的稳定性5.3.3 关系方程描述的模糊控制系统的稳定性第六章 数字单片机与模糊控制6.1 数字单片机MC68HC705P96.1.1 MC68HC705P9单片机性能概论6.1.2 MC68HC705P9单片机基本结构6.1.3 MC68HC705P9指令系统6.2 数字单片机模糊控制方式6.2.1 数字单片机与模糊控制关系6.2.2 数字单片机模糊控制方式第七章 模糊单片机与模糊控制7.1 模糊单片机NLX2307.1.1 模糊单片机NLX230性能概况7.1.2 NLX230的结构及引脚7.1.3 NLX230的模糊推理方式7.1.4 NLX230的内部寄存器7.1.5 NLX230的操作及接口技术7.2 NLX230开发系统7.3 NLX230应用例子第八章 模糊控制的开发软件8.1 模糊推理机原理8.2 模糊推理机的算法8.3 模糊推理机结构和清单8.4 模糊逻辑知识基发生器8.5 模糊推理开发环境8.5.1 FIDE的工作条件8.5.2 FIDE的结构8.5.3 FIDE的工作过程第九章 模糊控制在家用电器中的应用9.1 模糊控制的电冰箱9.1.1 电冰箱模糊控制系统结构9.1.2 模糊控制规则和模糊量9.1.3 控制系统的电路结构9.1.4 控制规则的自调整9.2 模糊控制的电饭锅9.2.1 煮饭的工艺过程曲线9.2.2 模糊控制的逻辑结构9.2.3 模糊量和模糊推理9.2.4 控制软件框图9.3 模糊控制的微波炉9.3.1 控制电路的结构框图9.3.2 微波炉的模糊量与推理9.3.3 微波炉控制电路结构原理9.3.4 控制软件原理及框图9.4 模糊控制的洗衣机9.4.1 模糊洗衣机控制系统逻辑结构9.4.2 模糊洗衣机的模糊推理9.4.3 洗衣机物理量检测方法9.4.4 布质和布量的模糊推理第十章 模糊控制在工程上的应用10.1 模糊参数自适应PID控制器10.1.1 自校正PID控制器10.1.2 模糊参数自适应PID控制系统结构10.1.3 模糊控制规则的产生10.1.4 模糊推理机理及运行结果10.2 恒温炉模糊控制10.2.1 恒温炉模糊控制的系统结构10.2.2 模糊控制器及控制规则的形成10.2.3 模糊控制器的校正10.3 感应电机模糊矢量控制10.3.1 模糊矢量控制系统结构10.3.2 矢量控制的基本原理10.3.3 模糊电阻观测器10.3.4 模糊控制器及运行

    标签: 单片机 模糊逻辑 控制

    上传时间: 2014-12-28

    上传用户:semi1981

  • 题目:利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用A表示

    题目:利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用A表示,60-89分之间的用B表示,60分以下的用C表示。 1.程序分析:(a>b)?a:b这是条件运算符的基本例子。

    标签: gt 90 运算符 嵌套

    上传时间: 2015-01-08

    上传用户:lifangyuan12

  • 源代码用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a

    源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).

    标签: lt 源代码 动态规划 序列

    上传时间: 2013-12-26

    上传用户:siguazgb

  • The government of a small but important country has decided that the alphabet needs to be streamline

    The government of a small but important country has decided that the alphabet needs to be streamlined and reordered. Uppercase letters will be eliminated. They will issue a royal decree in the form of a String of B and A characters. The first character in the decree specifies whether a must come ( B )Before b in the new alphabet or ( A )After b . The second character determines the relative placement of b and c , etc. So, for example, "BAA" means that a must come Before b , b must come After c , and c must come After d . Any letters beyond these requirements are to be excluded, so if the decree specifies k comparisons then the new alphabet will contain the first k+1 lowercase letters of the current alphabet. Create a class Alphabet that contains the method choices that takes the decree as input and returns the number of possible new alphabets that conform to the decree. If more than 1,000,000,000 are possible, return -1. Definition

    标签: government streamline important alphabet

    上传时间: 2015-06-09

    上传用户:weixiao99

  • We have a group of N items (represented by integers from 1 to N), and we know that there is some tot

    We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.

    标签: represented integers group items

    上传时间: 2016-01-17

    上传用户:jeffery

  • symbian C++ 入门经典 初学者必读

    symbian C++ 入门经典 初学者必读,step by step 目录 1 概述 5 2 预备知识 5 3 Symbian OS Platform及应用开发5 3.1 内核和用户库.5 3.2 文件和目录5 3.3 目标平台及其变种6 3.4 Symbian OS的目标类型.6 4 应用开发工具包(SDKs)和工具7 4.1 SDK安装后的目录结构.7 4.1.1 根目录.7 4.1.2 Epoc32\.7 4.1.3 Epoc32Ex\8 4.2 应用构建工具.8 4.2.1 项目定义文件9 4.2.2 组件描述文件(bld.inf)9 4.2.3 bldmake命令9 5 渐进式指导10 5.1 控制台应用.10 5.2 基本源文件.10 5.3 构建应用.10 5.4 运行应用.11 6 深入研讨 13

    标签: symbian 初学者

    上传时间: 2014-01-19

    上传用户:yuanyuan123

  • 实现死锁避免算法——银行家算法 1、程序运行开始时

    实现死锁避免算法——银行家算法 1、程序运行开始时,资源全部可用。资源种类约10种,每种资源数目为1~10。 2、不断随机产生或手工输入新的“进程资源需求向量”,并填写到最大需求矩阵。 3、在各进程的最大需求数量范围内(因此需作是否超出范围的检验),为各进程随机生成或手工输入资源请求。经银行家算法后输出系统是否安全的信息。当一个进程的资源请求全部发完后,认为它结束

    标签: 算法 死锁 程序

    上传时间: 2014-01-27

    上传用户:daoxiang126

  • C语言算法速查手册 书本附件

    第1章 绪论 1 1.1 程序设计语言概述 1 1.1.1 机器语言 1 1.1.2 汇编语言 2 1.1.3 高级语言 2 1.1.4 C语言 3 1.2 C语言的优点和缺点 4 1.2.1 C语言的优点 4 1.2.2 C语言的缺点 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的复杂度 8 1.3.3 算法的准确性 10 1.3.4 算法的稳定性 14 第2章 复数运算 18 2.1 复数的四则运算 18 2.1.1 [算法1] 复数乘法 18 2.1.2 [算法2] 复数除法 20 2.1.3 【实例5】 复数的四则运算 22 2.2 复数的常用函数运算 23 2.2.1 [算法3] 复数的乘幂 23 2.2.2 [算法4] 复数的n次方根 25 2.2.3 [算法5] 复数指数 27 2.2.4 [算法6] 复数对数 29 2.2.5 [算法7] 复数正弦 30 2.2.6 [算法8] 复数余弦 32 2.2.7 【实例6】 复数的函数运算 34 第3章 多项式计算 37 3.1 多项式的表示方法 37 3.1.1 系数表示法 37 3.1.2 点表示法 38 3.1.3 [算法9] 系数表示转化为点表示 38 3.1.4 [算法10] 点表示转化为系数表示 42 3.1.5 【实例7】 系数表示法与点表示法的转化 46 3.2 多项式运算 47 3.2.1 [算法11] 复系数多项式相乘 47 3.2.2 [算法12] 实系数多项式相乘 50 3.2.3 [算法13] 复系数多项式相除 52 3.2.4 [算法14] 实系数多项式相除 54 3.2.5 【实例8】 复系数多项式的乘除法 56 3.2.6 【实例9】 实系数多项式的乘除法 57 3.3 多项式的求值 59 3.3.1 [算法15] 一元多项式求值 59 3.3.2 [算法16] 一元多项式多组求值 60 3.3.3 [算法17] 二元多项式求值 63 3.3.4 【实例10】 一元多项式求值 65 3.3.5 【实例11】 二元多项式求值 66 第4章 矩阵计算 68 4.1 矩阵相乘 68 4.1.1 [算法18] 实矩阵相乘 68 4.1.2 [算法19] 复矩阵相乘 70 4.1.3 【实例12】 实矩阵与复矩阵的乘法 72 4.2 矩阵的秩与行列式值 73 4.2.1 [算法20] 求矩阵的秩 73 4.2.2 [算法21] 求一般矩阵的行列式值 76 4.2.3 [算法22] 求对称正定矩阵的行列式值 80 4.2.4 【实例13】 求矩阵的秩和行列式值 82 4.3 矩阵求逆 84 4.3.1 [算法23] 求一般复矩阵的逆 84 4.3.2 [算法24] 求对称正定矩阵的逆 90 4.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 92 4.3.4 【实例14】 验证矩阵求逆算法 97 4.3.5 【实例15】 验证T矩阵求逆算法 99 4.4 矩阵分解与相似变换 102 4.4.1 [算法26] 实对称矩阵的LDL分解 102 4.4.2 [算法27] 对称正定实矩阵的Cholesky分解 104 4.4.3 [算法28] 一般实矩阵的全选主元LU分解 107 4.4.4 [算法29] 一般实矩阵的QR分解 112 4.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 116 4.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 121 4.4.7 【实例16】 对一般实矩阵进行QR分解 126 4.4.8 【实例17】 对称矩阵的相似变换 127 4.4.9 【实例18】 一般实矩阵相似变换 129 4.5 矩阵特征值的计算 130 4.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 130 4.5.2 [算法33] 求对称三对角阵的全部特征值 137 4.5.3 [算法34] 求对称矩阵特征值的雅可比法 143 4.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 147 4.5.5 【实例19】 求上Hessen-Burg矩阵特征值 151 4.5.6 【实例20】 分别用两种雅克比法求对称矩阵特征值 152 第5章 线性代数方程组的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 155 5.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 160 5.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 163 5.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 168 5.1.5 [算法40] 求解大型稀疏系数矩阵方程组的高斯-约当消去法 171 5.1.6 [算法41] 求解三对角线方程组的追赶法 174 5.1.7 [算法42] 求解带型方程组的方法 176 5.1.8 【实例21】 解线性实系数方程组 179 5.1.9 【实例22】 解线性复系数方程组 180 5.1.10 【实例23】 解三对角线方程组 182 5.2 矩阵分解法 184 5.2.1 [算法43] 求解对称方程组的LDL分解法 184 5.2.2 [算法44] 求解对称正定方程组的Cholesky分解法 186 5.2.3 [算法45] 求解线性最小二乘问题的QR分解法 188 5.2.4 【实例24】 求解对称正定方程组 191 5.2.5 【实例25】 求解线性最小二乘问题 192 5.3 迭代方法 193 5.3.1 [算法46] 病态方程组的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德尔迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解对称正定方程组的共轭梯度方法 205 5.3.6 [算法51] 求解托伯利兹方程组的列文逊方法 209 5.3.7 【实例26】 解病态方程组 214 5.3.8 【实例27】 用迭代法解方程组 215 5.3.9 【实例28】 求解托伯利兹方程组 217 第6章 非线性方程与方程组的求解 219 6.1 非线性方程求根的基本过程 219 6.1.1 确定非线性方程实根的初始近似值或根的所在区间 219 6.1.2 求非线性方程根的精确解 221 6.2 求非线性方程一个实根的方法 221 6.2.1 [算法52] 对分法 221 6.2.2 [算法53] 牛顿法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【实例29】 用对分法求非线性方程组的实根 232 6.2.6 【实例30】 用牛顿法求非线性方程组的实根 233 6.2.7 【实例31】 用插值法求非线性方程组的实根 235 6.2.8 【实例32】 用埃特金迭代法求非线性方程组的实根 237 6.3 求实系数多项式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【实例33】 用QR方法求解多项式的全部根 240 6.4 求非线性方程组一组实根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 拟牛顿法 244 6.4.3 【实例34】 用梯度法计算非线性方程组的一组实根 250 6.4.4 【实例35】 用拟牛顿法计算非线性方程组的一组实根 252 第7章 代数插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 线性插值 255 7.1.2 [算法60] 二次抛物线插值 256 7.1.3 [算法61] 全区间插值 259 7.1.4 【实例36】 拉格朗日插值 262 7.2 埃尔米特插值 263 7.2.1 [算法62] 埃尔米特不等距插值 263 7.2.2 [算法63] 埃尔米特等距插值 267 7.2.3 【实例37】 埃尔米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【实例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【实例39】 光滑插值 286 7.5 三次样条插值 287 7.5.1 [算法68] 第一类边界条件的三次样条函数插值 287 7.5.2 [算法69] 第二类边界条件的三次样条函数插值 292 7.5.3 [算法70] 第三类边界条件的三次样条函数插值 296 7.5.4 【实例40】 样条插值法 301 7.6 连分式插值 303 7.6.1 [算法71] 连分式插值 304 7.6.2 【实例41】 验证连分式插值的函数 308 第8章 数值积分法 309 8.1 变步长求积法 310 8.1.1 [算法72] 变步长梯形求积法 310 8.1.2 [算法73] 自适应梯形求积法 313 8.1.3 [算法74] 变步长辛卜生求积法 316 8.1.4 [算法75] 变步长辛卜生二重积分方法 318 8.1.5 [算法76] 龙贝格积分 322 8.1.6 【实例42】 变步长积分法进行一重积分 325 8.1.7 【实例43】 变步长辛卜生积分法进行二重积分 326 8.2 高斯求积法 328 8.2.1 [算法77] 勒让德-高斯求积法 328 8.2.2 [算法78] 切比雪夫求积法 331 8.2.3 [算法79] 拉盖尔-高斯求积法 334 8.2.4 [算法80] 埃尔米特-高斯求积法 336 8.2.5 [算法81] 自适应高斯求积方法 337 8.2.6 【实例44】 有限区间高斯求积法 342 8.2.7 【实例45】 半无限区间内高斯求积法 343 8.2.8 【实例46】 无限区间内高斯求积法 345 8.3 连分式法 346 8.3.1 [算法82] 计算一重积分的连分式方法 346 8.3.2 [算法83] 计算二重积分的连分式方法 350 8.3.3 【实例47】 连分式法进行一重积分 354 8.3.4 【实例48】 连分式法进行二重积分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法进行一重积分 356 8.4.2 [算法85] 蒙特卡洛法进行二重积分 358 8.4.3 【实例49】 一重积分的蒙特卡洛法 360 8.4.4 【实例50】 二重积分的蒙特卡洛法 361 第9章 常微分方程(组)初值问题的求解 363 9.1 欧拉方法 364 9.1.1 [算法86] 定步长欧拉方法 364 9.1.2 [算法87] 变步长欧拉方法 366 9.1.3 [算法88] 改进的欧拉方法 370 9.1.4 【实例51】 欧拉方法求常微分方程数值解 372 9.2 龙格-库塔方法 376 9.2.1 [算法89] 定步长龙格-库塔方法 376 9.2.2 [算法90] 变步长龙格-库塔方法 379 9.2.3 [算法91] 变步长基尔方法 383 9.2.4 【实例52】 龙格-库塔方法求常微分方程的初值问题 386 9.3 线性多步法 390 9.3.1 [算法92] 阿当姆斯预报校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全区间积分的双边法 399 9.3.4 【实例53】 线性多步法求常微分方程组初值问题 401 第10章 拟合与逼近 405 10.1 一元多项式拟合 405 10.1.1 [算法95] 最小二乘拟合 405 10.1.2 [算法96] 最佳一致逼近的里米兹方法 412 10.1.3 【实例54】 一元多项式拟合 417 10.2 矩形区域曲面拟合 419 10.2.1 [算法97] 矩形区域最小二乘曲面拟合 419 10.2.2 【实例55】 二元多项式拟合 428 第11章 特殊函数 430 11.1 连分式级数和指数积分 430 11.1.1 [算法98] 连分式级数求值 430 11.1.2 [算法99] 指数积分 433 11.1.3 【实例56】 连分式级数求值 436 11.1.4 【实例57】 指数积分求值 438 11.2 伽马函数 439 11.2.1 [算法100] 伽马函数 439 11.2.2 [算法101] 贝塔函数 441 11.2.3 [算法102] 阶乘 442 11.2.4 【实例58】 伽马函数和贝塔函数求值 443 11.2.5 【实例59】 阶乘求值 444 11.3 不完全伽马函数 445 11.3.1 [算法103] 不完全伽马函数 445 11.3.2 [算法104] 误差函数 448 11.3.3 [算法105] 卡方分布函数 450 11.3.4 【实例60】 不完全伽马函数求值 451 11.3.5 【实例61】 误差函数求值 452 11.3.6 【实例62】 卡方分布函数求值 453 11.4 不完全贝塔函数 454 11.4.1 [算法106] 不完全贝塔函数 454 11.4.2 [算法107] 学生分布函数 457 11.4.3 [算法108] 累积二项式分布函数 458 11.4.4 【实例63】 不完全贝塔函数求值 459 11.5 贝塞尔函数 461 11.5.1 [算法109] 第一类整数阶贝塞尔函数 461 11.5.2 [算法110] 第二类整数阶贝塞尔函数 466 11.5.3 [算法111] 变型第一类整数阶贝塞尔函数 469 11.5.4 [算法112] 变型第二类整数阶贝塞尔函数 473 11.5.5 【实例64】 贝塞尔函数求值 476 11.5.6 【实例65】 变型贝塞尔函数求值 477 11.6 Carlson椭圆积分 479 11.6.1 [算法113] 第一类椭圆积分 479 11.6.2 [算法114] 第一类椭圆积分的退化形式 481 11.6.3 [算法115] 第二类椭圆积分 483 11.6.4 [算法116] 第三类椭圆积分 486 11.6.5 【实例66】 第一类勒让德椭圆函数积分求值 490 11.6.6 【实例67】 第二类勒让德椭圆函数积分求值 492 第12章 极值问题 494 12.1 一维极值求解方法 494 12.1.1 [算法117] 确定极小值点所在的区间 494 12.1.2 [算法118] 一维黄金分割搜索 499 12.1.3 [算法119] 一维Brent方法 502 12.1.4 [算法120] 使用一阶导数的Brent方法 506 12.1.5 【实例68】 使用黄金分割搜索法求极值 511 12.1.6 【实例69】 使用Brent法求极值 513 12.1.7 【实例70】 使用带导数的Brent法求极值 515 12.2 多元函数求极值 517 12.2.1 [算法121] 不需要导数的一维搜索 517 12.2.2 [算法122] 需要导数的一维搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共轭梯度法 525 12.2.5 [算法125] 准牛顿法 531 12.2.6 【实例71】 验证不使用导数的一维搜索 536 12.2.7 【实例72】 用Powell算法求极值 537 12.2.8 【实例73】 用共轭梯度法求极值 539 12.2.9 【实例74】 用准牛顿法求极值 540 12.3 单纯形法 542 12.3.1 [算法126] 求无约束条件下n维极值的单纯形法 542 12.3.2 [算法127] 求有约束条件下n维极值的单纯形法 548 12.3.3 [算法128] 解线性规划问题的单纯形法 556 12.3.4 【实例75】 用单纯形法求无约束条件下N维的极值 568 12.3.5 【实例76】 用单纯形法求有约束条件下N维的极值 569 12.3.6 【实例77】 求解线性规划问题 571 第13章 随机数产生与统计描述 574 13.1 均匀分布随机序列 574 13.1.1 [算法129] 产生0到1之间均匀分布的一个随机数 574 13.1.2 [算法130] 产生0到1之间均匀分布的随机数序列 576 13.1.3 [算法131] 产生任意区间内均匀分布的一个随机整数 577 13.1.4 [算法132] 产生任意区间内均匀分布的随机整数序列 578 13.1.5 【实例78】 产生0到1之间均匀分布的随机数序列 580 13.1.6 【实例79】 产生任意区间内均匀分布的随机整数序列 581 13.2 正态分布随机序列 582 13.2.1 [算法133] 产生任意均值与方差的正态分布的一个随机数 582 13.2.2 [算法134] 产生任意均值与方差的正态分布的随机数序列 585 13.2.3 【实例80】 产生任意均值与方差的正态分布的一个随机数 587 13.2.4 【实例81】 产生任意均值与方差的正态分布的随机数序列 588 13.3 统计描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同时的t分布检验 591 13.3.3 [算法137] 方差不同时的t分布检验 594 13.3.4 [算法138] 方差的F检验 596 13.3.5 [算法139] 卡方检验 599 13.3.6 【实例82】 计算随机样本的矩 601 13.3.7 【实例83】 t分布检验 602 13.3.8 【实例84】 F分布检验 605 13.3.9 【实例85】 检验卡方检验的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序数组的二分查找 609 14.1.2 [算法141] 无序数组同时查找最大和最小的元素 611 14.1.3 [算法142] 无序数组查找第M小的元素 613 14.1.4 【实例86】 基本查找 615 14.2 结构体和磁盘文件的查找 617 14.2.1 [算法143] 无序结构体数组的顺序查找 617 14.2.2 [算法144] 磁盘文件中记录的顺序查找 618 14.2.3 【实例87】 结构体数组和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函数 622 14.3.2 [算法146] 哈希函数 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中删除元素 631 14.3.6 【实例88】 构造哈希表并进行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希尔排序 637 15.1.3 【实例89】 插入排序 639 15.2 交换排序 641 15.2.1 [算法152] 气泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【实例90】 交换排序 644 15.3 选择排序 646 15.3.1 [算法154] 直接选择排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【实例91】 选择排序 650 15.4 线性时间排序 651 15.4.1 [算法156] 计数排序 651 15.4.2 [算法157] 基数排序 653 15.4.3 【实例92】 线性时间排序 656 15.5 归并排序 657 15.5.1 [算法158] 二路归并排序 658 15.5.2 【实例93】 二路归并排序 660 第16章 数学变换与滤波 662 16.1 快速傅里叶变换 662 16.1.1 [算法159] 复数据快速傅里叶变换 662 16.1.2 [算法160] 复数据快速傅里叶逆变换 666 16.1.3 [算法161] 实数据快速傅里叶变换 669 16.1.4 【实例94】 验证傅里叶变换的函数 671 16.2 其他常用变换 674 16.2.1 [算法162] 快速沃尔什变换 674 16.2.2 [算法163] 快速哈达玛变换 678 16.2.3 [算法164] 快速余弦变换 682 16.2.4 【实例95】 验证沃尔什变换和哈达玛的函数 684 16.2.5 【实例96】 验证离散余弦变换的函数 687 16.3 平滑和滤波 688 16.3.1 [算法165] 五点三次平滑 689 16.3.2 [算法166] α-β-γ滤波 690 16.3.3 【实例97】 验证五点三次平滑 692 16.3.4 【实例98】 验证α-β-γ滤波算法 693  

    标签: C 算法 附件 源代码

    上传时间: 2015-06-29

    上传用户:cbsdukaf