实现B树,并在MFC中将其画出。 B树的表示及基本操作的实现。 1.掌握B树的存贮结构。 2.实现B树中关键字值的插入及删除操作。 3.屏幕图形化的显示。
标签: 树
上传时间: 2013-12-18
上传用户:xymbian
1. 通过8255A并口来控制LED发光二极管的亮灭。 2. A口控制红灯,B口控制黄灯,C口控制绿灯。 3. 输出为0则亮,输出为1则灭。 4. 用8253定时来控制变换时间 。
上传时间: 2013-12-06
上传用户:cccole0605
1.6.1 顺序表的查找 273 范例1-94 顺序表的查找 273 ∷相关函数:Search_Seq函数 1.6.2 静态树表的查找 276 范例1-95 静态树表的查找 276 ∷相关函数:Search_SOSTree函数 1.6.3 二叉排序树的基本操作 280 范例1-96 二叉排序树的基本操作 280 ∷相关函数:InsertBST函数 1.6.4 平衡二叉树的基本操作 285 范例1-97 平衡二叉树的基本操作 285 ∷相关函数:SearchBST函数 1.6.5 B树的基本操作 290 范例1-98 B树的基本操作 290 ∷相关函数:SearchBTree函数 1.6.6 按关键字符串的遍历双链键树 295 范例1-99 按关键字符串遍历双链键树 295 ∷相关函数:SearchDLTree函数 1.6.7 按关键字符串的遍历Trie树 301 范例1-100 按关键字符串遍历Trie树 301 ∷相关函数:SearchTrie函数 1.6.8 哈希表的基本操作 306 范例1-101 哈希表的基本操作 306 ∷相关函数:SearchHash函数
标签: Search_Seq 273 276 顺序表
上传时间: 2013-12-27
上传用户:维子哥哥
产品型号:VK3604A 产品品牌:VINKA/永嘉微电 封装形式:SOP16 产品年份:新年份 联 系 人:陈锐鸿 Q Q:361 888 5898 联系手机:188 2466 2436(信) 概述: VK3604/VK3604A具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较高的 集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路输出功能,可通过IO脚选择输出电平,输出模式,输出脚结构,单键/多键和最 长输出时间。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可减少按键检测错误的 发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO输 出的应用提供了一种简单而又有效的实现方法。 特点: • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR) • 触摸输出响应时间:工作模式 48mS ,待机模式160mS • 通过AHLB脚选择输出电平:高电平有效或者低电平有效 • 通过TOG脚选择输出模式:直接输出或者锁存输出 • 通过SOD脚选择输出方式:CMOS输出或者开漏输出 • 通过SM脚选择输出:多键有效或者单键有效 • 通过MOT脚有效键最长输出时间:无穷大或者16S • 通过CS脚接对地电容调节整体灵敏度(1-47nF) • 各触摸通道单独接对地小电容微调灵敏度(0-50pF) • 上电0.25S内为稳定时间,禁止触摸 • 上电后4S内自校准周期为64mS,4S无触摸后自校准周期为1S • 封装SOP16(150mil)(9.9mm x 3.9mm PP=1.27mm) ———————————————— 产品型号:VK3604B 产品品牌:VINKA/永嘉微电 封装形式:TSSOP16 产品年份:新年份 联 系 人:陈锐鸿 1.概述 VK3604B具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有 较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了4路直接输出功能。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可 减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO 输出的应用提供了一种简单而又有效的实现方法。 特点 • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR) • 触摸输出响应时间: 工作模式 48mS 待机模式160mS • CMOS输出,低电平有效,支持多键 • 有效键最长输出16S • 无触摸4S自动校准 • 专用脚接对地电容调节灵敏度(1-47nF) • 各触摸通道单独接对地小电容微调灵敏度(0-50pF). • 上电0.25S内为稳定时间,禁止触摸. • 封装 TSSOP16L(4.9mm x 3.9mm PP=1.00mm) KPP841 标准触控IC-电池供电系列: VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD223B --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD233DB --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 有效键最长时间检测16S VKD233DS --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DR --- 工作电压/电流:2.4V-5.5V/1.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流1.5uA-3V VKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 (开漏输出) 通讯界面:开漏输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD232C --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 感应通道数:2 封装:SOT23-6 通讯界面:直接输出,低电平有效 固定为多键输出模式,内建稳压电路 MTP触摸IC——VK36N系列抗电源辐射及手机干扰: VK3601L --- 工作电压/电流:2.4V-5.5V/4UA-3V3 感应通道数:1 1对1直接输出 待机电流小,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOT23-6 VK36N1D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:1 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK36N2P --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 脉冲输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK3602XS ---工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2锁存输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压 封装:SOP8 VK3602K --- 工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2直接输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压 封装:SOP8 VK36N2D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8 VK36N3BT ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码锁存输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOP8 VK36N3BD ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOP8 VK36N3BO ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码开漏输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP8/DFN8(超小超薄体积) VK36N3D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N4B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N4I---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5D ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N7B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N7I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N8B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N8I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N9I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:9 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N10I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:10 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) 1-8点高灵敏度液体水位检测IC——VK36W系列 VK36W1D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:1 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOT23-6 备注:1. 开漏输出低电平有效 2、适合需要抗干扰性好的应用 VK36W2D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:2 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP8 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W4D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:4 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W6D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:6 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W8I ---工作电压/电流:2.2V-5.5V/10UA-3V3 I2C输出 水位检测通道:8 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. IIC+INT输出 2、输出模式/输出电平可通过IO选择 KPP841
标签: 3604 输出 VK 体积 蓝牙音箱 检测 方式 芯片 触控 锁存
上传时间: 2022-04-11
上传用户:shubashushi66
1) 全数字化设计,交流采样,人机界面采用大屏幕点阵图形128X64 LCD中文液晶显示器。 2) 可实时显示A、B、C各相功率因数、电压、电流、有功功率、无功功率、电压总谐波畸变率、电流总谐波畸变率、电压3、5、7、9、11、13次谐波畸变率、电流3、5、7、9、 11、13次谐波畸变率频率、频率、电容输出显示及投切状态、报警等信息。 3) 设置参数中文提示,数字输入。 4) 电容器控制方案支持三相补偿、分相补偿、混合补偿方案,可通过菜单操作进行设置。 5) 电容器投切控制程序支持等容/编码(1:2、 1:2:3、 1:2:4:8…)等投切方式。 6) 具有手动补偿/自动补偿两种工作方式。 7) 提供电平控制输出接口(+12V),动态响应优于20MS。 8) 取样物理量为无功功率,具有谐波测量及保护功能。 9) 控制器具有RS-485通讯接口,MODBUS标准现场总线协议,方便接入低压配电系统。
上传时间: 2013-11-09
上传用户:dancnc
/*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0; //累加器 sfr B = 0xF0; //B 寄存器 sfr PSW = 0xD0; //程序状态字寄存器 sbit CY = PSW^7; //进位标志位 sbit AC = PSW^6; //辅助进位标志位 sbit F0 = PSW^5; //用户标志位0 sbit RS1 = PSW^4; //工作寄存器组选择控制位 sbit RS0 = PSW^3; //工作寄存器组选择控制位 sbit OV = PSW^2; //溢出标志位 sbit F1 = PSW^1; //用户标志位1 sbit P = PSW^0; //奇偶标志位 sfr SP = 0x81; //堆栈指针寄存器 sfr DPL = 0x82; //数据指针0低字节 sfr DPH = 0x83; //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON = 0x87; //电源控制寄存器 sfr AUXR = 0x8E; //辅助寄存器 sfr AUXR1 = 0xA2; //辅助寄存器1 sfr WAKE_CLKO = 0x8F; //时钟输出和唤醒控制寄存器 sfr CLK_DIV = 0x97; //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1; //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE = 0xA8; //中断允许寄存器 sbit EA = IE^7; //总中断允许位 sbit ELVD = IE^6; //低电压检测中断控制位 8051
上传时间: 2013-10-30
上传用户:yxgi5
本书分三部分介绍在美国广泛应用的、高功能的M68HC11系列单片机(8位机 ,Motorola公司)。内容包括M68HC11的结构与其基本原理、开发工具EVB(性能评估板)以及开发和应用技术。本书在介绍单片机硬、软件的基础上,进一步介绍了在美国实验室内,如何应用PC机及EVB来进行开发工作。通过本书的介绍,读者可了解这种单片机的原理并学会开发和应用方法。本书可作为大专院校单片机及其实验的教材(本科、短训班)。亦可供开发、应用单片机的各专业(计算机、机电、化工、纺织、冶金、自控、航空、航海……)有关技术人员参考。 第一部分 M68HC11 结构与原理Motorola单片机 1 Motorla单片机 1.1 概述 1.1.1 Motorola 单片机发展概况(3) 1.1.2 Motorola 单片机结构特点(4) 1.2 M68HC11系列单片机(5) 1.2.1 M68HC11产品系列(5) 1.2.2 MC68HC11E9特性(6) 1.2.3 MC68HC11E9单片机引脚说明(8) 1.3 Motorola 32位单片机(14) 1.3.1中央处理器(CPU32)(15) 1.3.2 定时处理器(TPU)(16) 1.3.3 串行队列模块(QSM)(16) 1.3.4 系统集成模块 (SIM)(16) 1.3.5 RAM(17) 2 系统配置与工作方式 2.1 系统配置(19) 2.1.1 配置寄存器CONFIG(19) 2.1.2 CONFIG寄存器的编程与擦除(20) 2?2 工作方式选择(21) 2.3 M68HC11的工作方式(23) 2.3.1 普通单片工作方式(23) 2.3.2 普通扩展工作方式(23) 2.3.3 特殊自举方式(27) 2.3.4 特殊测试方式(28) 3 中央处理器(CPU)与片上存储器 3.1 CPU寄存器(31) 3?1?1 累加器A、B和双累加器D(32) 3.1.2 变址寄存器X、Y(32) 3.1.3 栈指针SP(32) 3.1.4 程序计数器PC(33) 3.1.5 条件码寄存器CCR(33) 3.2 片上存储器(34) 3.2.1 存储器分布(34) 3.2.2 RAM和INIT寄存器(35) 3.2.3 ROM(37) 3.2.4 EEPROM(37) 3.3 M68HC11 CPU的低功耗方式(39) 3.3.1 WAIT方式(39) 3.3.2 STOP方式(40) 4 复位和中断 4.1 复位(41) 4.1.1 M68HC11的系统初始化条件(41) 4.1.2 复位形式(43) 4.2 中断(48) 4.2.1 条件码寄存器CCR中的中断屏蔽位(48) 4.2.2 中断优先级与中断矢量(49) 4.2.3 非屏蔽中断(52) 4.2.4 实时中断(53) 4.2.5 中断处理过程(56) 5 M68HC11指令系统 5.1 M68HC11寻址方式(59) 5.1.1 立即寻址(IMM)(59) 5.1.2 扩展寻址(EXT)(60) 5.1.3 直接寻址(DIR)(60) 5.1.4 变址寻址(INDX、INDY)(61) 5.1.5 固有寻址(INH)(62) 5.1.6 相对寻址(REL)(62) 5.1.7 前置字节(63) 5.2 M68HC11指令系统(63) 5.2.1 累加器和存储器指令(63) 5.2.2 栈和变址寄存器指令(68) 5.2.3 条件码寄存器指令(69) 5.2.4 程序控制指令(70) 6 输入与输出 6.1 概述(73) 6.2 并行I/O口(74) 6.2.1 并行I/O寄存器(74) 6.2.2 应答I/O子系统(76) 6?3 串行通信接口SCI(82) 6.3.1 基本特性(83) 6.3.2 数据格式(83) 6.3.3 SCI硬件结构(84) 6.3.4 SCI寄存器(86) 6.4 串行外围接口SPI(92) 6.4.1 SPI特性(92) 6.4.2 SPI引脚信号(92) 6.4.3 SPI结构(93) 6.4.4 SPI寄存器(95) 6.4.5 SPI系统与外部设备进行串行数据传输(99) 7 定时器系统与脉冲累加器 7.1 概述(105) 7.2 循环计数器(107) 7.2.1 时钟分频器(107) 7.2.2 计算机正常工作监视功能(110) 7.2.3 定时器标志的清除(110) 7.3 输入捕捉功能(111) 7.3.1 概述(111) 7.3.2 定时器输入捕捉锁存器(TIC1、TIC2、TIC3) 7.3.3 输入信号沿检测逻辑(113) 7.3.4 输入捕捉中断(113) 7.4 输出比较功能(114) 7.4.1 概述(114) 7.4.2 输出比较功能使用的寄存器(116) 7.4.3 输出比较示例(118) 7.5 脉冲累加器(119) 7.5.1 概述(119) 7.5.2 脉冲累加器控制和状态寄存器(121) 8 A/D转换系统 8.1 电荷重新分布技术与逐次逼近算法(125) 8.1.1 基本电路(125) 8.1.2 A/D转换逐次逼近算法原理(130) 8.2 M68HC11中A/D转换的实现方法(131) 8.2.1 逐次逼近A/D转换器(131) 8.2.2 控制寄存器(132) 8.2.3 系统控制逻辑(135)? 9 单片机的内部操作 9.1 用立即> 图书前言 美国Motorola公司从80年代中期开始推出的M68HC11系列单片机是当今功能最强、性能/价格比最好的八位单片微计算机之一。在美国,它已被广泛地应用于教学和各种工业控制系统中。? 该单片机有丰富的I/O功能,完善的系统保护功能和软件控制的节电工作方式 。它的指令系统与早期Motorola单片机MC6801等兼容,同时增加了91条新指令。其中包含16位乘法、除法运算指令等。 为便于用户开发和应用M68HC11单片机,Motorola公司提供了多种开发工具。M68HC11 EVB (Evaluation Board)性能评估板就是一种M68HC11系列单片机的廉价开发工具。它既可用来 调试用户程序,又可在仿真方式下运行。为方便用户,M68HC11 EVB可与IBM?PC连接 ,借助于交叉汇编、通信程序等软件,在IBM?PC上调试程序。? 本书分三部分(共15章)介绍了M68HC11的结构和基本原理、开发工具-EVB及开发应用实例等。第一部分(1~9章),介绍M68HC11的结构和基本原理。包括概述,系统配置与工作方式、CPU和存储器、复位和中断、指令系统、I/O、定时器系统和脉冲累加器、A/D转换系统、单片机的内部操作等。第二部分(10~11章),介绍M68HC11 EVB的原理和技术特性以及EVB的应用。第三部分(12~15章),介绍M68HC11的开发与应用技术。包括基本的编程练习、应用程序设计、接口实验、接口设计及应用等。 读者通过学习本书,不仅可了解M68HC11的硬件、软件,而且可了解使用EVB开发和应用M68HC11单片机的方法。在本书的第三部分专门提供了一部分实验和应用程序。? 本书系作者张宁作为高级访问学者,应邀在美国马萨诸塞州洛厄尔大学(University of Massachusetts Lowell)工作期间完成的。全书由张宁执笔。在编著过程中,美国洛厄尔大学的R·代克曼教授?(Professor Robert J. Dirkman)多次与张宁一起讨论、研究,并提供部分资料及实验数据。参加编写和审校等工作的还有王云霞、孙晓芳、刘安鲁、张籍、来安德、张杨等同志。? 为将M68HC11系列单片机尽快介绍给我国,美国Motorola公司的Terrence M.S.Heng先生曾大力支持本书的编著和出版。在此表示衷心感谢。
上传时间: 2013-10-27
上传用户:rlgl123
本书针对Atmel公司的AVR系列单片机和ImageCraft公司的ICC AVR开发环境,详细地介绍了AT90LS8535的C语言程序设计。全书共有13章,其内容既涉及到了单片机的结构原理、指令系统、内容资源和外部功能扩展,又包含了单片机的编程工具——ICC AVR C编程器的数据类型、控制流、函数和指针等。本书的特点是:深入浅出,从最基本的概念开始,循序渐进地讲解单片机的应用开发;列举了大量实例,使读者能从实际应用中掌握单片机的开发与应用技术。本书适合作为从事单片机开发人员的参考用书。书中先后讲解了C语言基础、AVR单片机基础,并举了一些简单的实例。本书非常适合初学者。 【目录信息】 第1章 单片机系统概述 1. 1 AVR系列单片机的特点 1. 2 AT90系列单片机简介 第2章 AT90LS8535单片机的基础知识 2. 1 AT90LS8535单片机的总体结构 2. 1. 1 AT90LS8535单片机的中央处理器 2. 1. 2 AT90LS8535单片机的存储器组织 2. 1. 3 AT90LS8535单片机的I/O接口 2. 1. 4 AT90LS8535单片机的内部资源 2. 1. 5 AT90LS8535单片机的时钟电路 2. 1. 6 AT90LS8535单片机的系统复位 2. 1. 7 AT90LS8535单片机的节电方式 2. 1. 8 AT90LS8535单片机的芯片引脚 2. 2 AT90LS8535单片机的指令系统 2. 2. 1 汇编指令格式 2. 2. 2 寻址方式 2. 2. 3 伪指令 2. 2. 4 指令类型及数据操作方式 2. 3 应用程序设计 2. 3. 1 程序设计方法 2. 3. 2 应用程序举例 第3章 AT90LS8535单片机的C编程 3. 1 支持高级语言编程的AVR系列单片机 3. 2 AVR的C编译器 3. 3 ICCAVR介绍 3. 3. 1 安装ICCAVR 3. 3. 2 设置ICCAVR 3. 4 用ICCAVR编写应用程序 3. 5 下载程序文件 第4章 数据类型. 运算符和表达式 4. 1 ICCAVR支持的数据类型 4. 2 常量与变量 4. 2. 1 常量 4. 2. 2 变量 4. 3 AT90LS8535的存储空间 4. 4 算术和赋值运算 4. 4. 1 算术运算符和算术表达式 4. 4. 2 赋值运算符和赋值表达式 4. 5 逻辑运算 4. 6 关系运算 4. 7 位操作 4. 7. 1 位逻辑运算 4. 7. 2 移位运算 4. 8 逗号运算 第5章 控制流 5. 1 C语言的结构化程序设计 5. 1. 1 顺序结构 5. 1. 2 选择结构 5. 1. 3 循环结构 5. 2 选择语句 5. 2. 1 if语句 5. 2. 2 switch分支 5. 2. 3 选择语句的嵌套 5. 3 循环语句 5. 3. 1 while语句 5. 3. 2 do…while语句 5. 3. 3 for语句 5. 3. 4 循环语句嵌套 5. 3. 5 break语句和continue语句 第6章 函数 6. 1 函数的定义 6. 1. 1 函数的定义的一般形式 6. 1. 2 函数的参数 6. 1. 3 函数的值 6. 2 函数的调用 6. 2. 1 函数的一般调用 6. 2. 2 函数的递归调用 6. 2. 3 函数的嵌套调用 6. 3 变量的类型及其存储方式 6. 3. 1 局部变量 6. 3. 2 局部变量的存储方式 6. 3. 3 全局变量 6. 3. 4 全局变量的存储方式 6. 4 内部函数和外部函数 6. 4. 1 内部函数 6. 4. 2 外部函数 第7章 指针 7. 1 指针和指针变量 7. 2 指针变量的定义和引用 7. 2. 1 指针变量的定义 7. 2. 2 指针变量的引用 7. 2. 3 指针变量作为函数参数 7. 3 数组与指针 7. 3. 1 指向数组元素的指针变量 7. 3. 2 数组元素的引用 通过指针 7. 3. 3 数组名作为函数参数 7. 3. 4 指向多维数组的元素的指针变量 7. 4 字符串与指针 7. 4. 1 字符串的表示形式 7. 4. 2 字符串指针变量与字符数组的区别 7. 5 函数与指针 7. 5. 1 函数指针变量 7. 5. 2 指针型函数 7. 6 指向指针的指针 7. 7 有关指针数据类型和运算小结 7. 7. 1 有关指针的数据类型的小结 7. 7. 2 指针运算的小结 第8章 结构体和共用体 8. 1 结构体的定义和引用 8. 1. 1 结构体类型变量的定义 8. 1. 2 结构体类型变量的引用 8. 2 结构类型的说明 8. 3 结构体变量的初始化和赋值 8. 3. 1 结构体变量的初始化 8. 3. 2 结构体变量的赋值 8. 4 结构体数组 8. 4. 1 结构体数组的定义 8. 4. 2 结构体数组的初始化 8. 5 指向结构体类型变量的指针 8. 5. 1 指向结构体变量的指针 8. 5. 2 指向结构体数组的指针 8. 5. 3 指向结构体变量的指针做函数参数 8. 6 共用体 8. 6. 1 共用体的定义 8. 6. 2 共用体变量的引用 第9章 A190LS8535的内部资源 9. 1 I/O 口 9. 1. 1 端口A 9. 1. 2 端口B 9. 1. 3 端口C 9. 1. 4 端口D 9. 1. 5 I/O口的编程 9. 2 中断 9. 2. 1 单片机的中断功能 9. 2. 2 AT90LS8535单片机的中断系统 9. 2. 3 1CCAVRC编译器的中断操作 9. 2. 4 中断的编程 9. 3 串行数据通信 9. 3. 1 数据通信基础 9. 3. 2 AT90LS8535的同步串行接口 9. 3. 3 AT90LS8535的异步串行接口 9. 4 定时/计数器 9. 4. 1 定时/计数器的分频器 9. 4. 2 8位定时/计数器0 9. 4. 3 16位定时/计数器1 9. 4. 4 8位定时/计数器2 9. 5 EEPROM 9. 5. 1 与EEPROM有关的寄存器 9. 5. 2 EEPROM读/写操作 9. 5. 3 EEPROM的应用举例 9. 6 模拟量输入接口 9. 6. 1 模数转换器的结构 9. 6. 2 ADC的使用 9. 6. 3 与模数转换器有关的寄存器 9. 6. 4 ADC的噪声消除 9. 6. 5 ADC的应用举例 9. 7 模拟比较器 9. 7. 1 模拟比较器的结构 9. 7. 2 与模拟比较器有关的寄存器 9. 7. 3 模拟比较器的应用举例 第10章 AT90LS8535的人机接口编程 10. 1 键盘接口 10. 1. 1 非矩阵式键盘 10. 1. 2 矩阵式键盘 10. 2 LED显示输出 10. 2. 1 LED的静态显示 10. 2. 2 LED的动态扫描显示 10. 2. 3 动态扫描显示专用芯片MC14489 10. 3 LCD显示输出 10. 3. 1 字符型LCD 10. 3. 2 点阵型LCD 10. 4 ISD2500系列语音芯片的编程 10. 4. 1 ISD2500的片内结构和引脚 10. 4. 2 ISD2500的操作 10. 4. 3 ISD2500和单片机的接口及编程 10. 5 TP-uP微型打印机 10. 5. 1 TP-uP打印机的接口和逻辑时序 10. 5. 2 P-uP打印机的打印命令和字符代码 10. 5. 3 AT90LS8535与TP-uP系列打印机的接口及编程 10. 6 IC卡 10. 6. 1 IC卡读写装置 10. 6. 2 IC卡软件 第11章 AT90LS8535的外围扩展 11. 1 简单I/O扩展芯片 11. 1. 1 用74LS377扩展数据输出接口 11. 1. 2 数据输入接口 11. 2 模拟量输出 11. 2. 1 D/A转换器简介 11. 2. 2 8位数模转换器DAC0832 11. 2. 3 8位数模转换器与单片机的接口及编程 11. 2. 4 12位数模转换器DACl230 11. 2. 5 12位数模转换器与单片机的接口及编程 11. 3 可编程I/O扩展芯片8255A 11. 3. 1 8255A的引脚和内部结构 11. 3. 2 8255A的工作方式 11. 3. 3 8255A的控制字 11. 3. 4 AT90LS8535和8255A的接口 11. 4 带片内RAM的I/O扩展芯片8155 11. 4. 1 8155的引脚和内部结构. 11. 4. 2 8155的I/O口工作方式 11. 4. 3 8155的定时/计数器 11. 4. 4 8155的命令和状态字 11. 4. 5 AT90LS8535与8155的接口及编程 11. 5 定时/计数器芯片8253 11. 5. 1 8253的信号引脚和逻辑结构 11. 5. 2 8253的工作方式 11. 5. 3 8253的控制字 11. 5. 4 AT90LS8535与8253的接口及编程 11. 6 实时时钟芯片DS1302 11. 6. 1 DS1302的引脚和内部结构 11. 6. 2 DS1302的控制方式 11. 6. 3 AT90LS8535与DS1302的接口与编程 11. 7 数字温度传感器DS18B20 11. 7. 1 DSl8B20的引脚和内部结构 11. 7. 2 DS18B20的温度测量 11. 7. 3 AT90LS8535与DS18B20的接口与编程 第12章 AT90LS8535的通信编程 12. 1 串口通信 12. 1. 1 异步串口UART通信 12. 1. 2 同步串口SPI通信 12. 2 I2C总线 12. 2. 1 I2C总线协议 12. 2. 2 采用AT90LS8535的并行I/O口模拟I2C总线 12. 3 CAN总线 12. 3. 1 CAN总线的特点 12. 3. 2 CAN协议的信息格式 12. 3. 3 CAN控制器SJA1000 12. 3. 4 AT90LS8535与SJA1000的接口及编程 12. 4 AT90LS8535单片机与PC的串行通信 12. 4. 1 基于VC 6. 0的PC串口通信 12. 4. 2 应用实例 第13章 系统设计中的程序处理方法 13. 1 数字滤波处理 13. 1. 1 平滑滤波 13. 1. 2 中值滤波 13. 1. 3 程序判断滤波 13. 2 非线性处理 13. 2. 1 查表法 13. 2. 2 线性插值法
上传时间: 2013-11-04
上传用户:元宵汉堡包
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie