Using the XGATE for Manchester DecodingTable of Contents 1 Introduction 1.1 XGATE Module in S12X 2 Decoding Algorithm 3 Software Implementation 3.1 Frame Scheme 3.2 Operating Modes and Demo 3.3 Files Summary 3.4 Complete Mode Flowchart 4 Manchester Encoder 4.1 Devices Used 5 Conclusion Appendix A Noise Elements During RF Transmissions in the Manchester Decoding ImplementationA.1 Types of Noise A.2 Effects of Noise A.3 Workaround for Noise Effects
标签: Manchester XGATE 译码
上传时间: 2013-10-15
上传用户:wqq123456
基于M CORE微控制器的嵌入式系统从应用的角度出发,全面介绍了构成嵌人式系统的微控制器的结构和常用支撑硬件的原理以及设计开发方法。本书共 24章,分为3大部分。第 1部分(第 1~14章)介绍具有 32位 RISC CPU核的M·CORE微控制器的结构及原理,按模块分章,对各功能模块的原理及使用方法都有详尽的讲解。众所周知,微控制器种类繁多,虽然不同种类微控制器的CPU及内部功能模块有所不同,但基本原理(尤其是一些通用的功能)是一致的。第2部分(第15—19章)介绍嵌入式系统常用外围电路的原理及设计和使用方法,包括有:异步串行接口的互连及应用举例、同步串行总线及应用举例、液晶显示模块、液晶控制器、触摸屏及触摸屏控制器和各类存储器的应用举例。第3部分(第20—24章)介绍嵌人式系统的开发环境与软件开发,在讨论嵌人式系统软件开发的一般过程和开发工具需求的基础上,介绍M·CORE软件开发支持工具集、MMC2107微控制器评估板、M·CORE常用工具软件、QodeWarrior集成开发环境IDE及M·CORE的基本程序设计技术。 第1部分 M·COREM控制器的结构及原理 第1章 微控制器及其应用技术概述 1.1 微控制器的特点 1.2 微控制器技术的发展 1.3 M·CORE系列微控制器 l.3.1 MMC2107的特点及组成 1.3.2 MMC2107的引脚描述 1.3.3 MMC2107的系统存储器地址映射 第2章 M·CORE M210中央处理单元(CPU) 2.1 M·CORE处理器综述 2.1.1 M·CORE处理器的微结构 2.1.2 M·CORE处理器的编程模型 2.1.3 M·CORE的数据格式 2.1.4 M·CORE处理器的寄存器 2.2 M·CORE处理器指令系统简述 2. 2.l 指令类型和寻址方式
上传时间: 2013-10-28
上传用户:lhw888
这一颗,我们学习如何让跑马灯自动按照我们预定的顺序进行。这种控制在工控场合经常用到。这个程序里,我们预先定义了一个变化的顺序speedcode,每跑一圈灯就根据预定设置的表格数据来决定下一圈的跑马速度。这样我们就实现了按照预定的顺序自动变化运行。请看代码:-----------------------------------#define uchar unsigned char //定义一下方便使用#define uint unsigned int#define ulong unsigned long#include <reg52.h> //包括一个52 标准内核的头文件sbit P10 = P1^0; //头文件中没有定义的IO 就要自己来定义了sbit P11 = P1^1;sbit P12 = P1^2;sbit P13 = P1^3;bit ldelay=0; //长定时溢出标记,预置是0uchar speed=10; //设置一个变量保存跑马灯的移动速度uchar code speedcode[10]={3,1,5,12,3,20,2,10,1,4}; //10 个预定义的速度char code dx516[3] _at_ 0x003b;//这是为了仿真设置的//可编程自动控制跑马灯void main(void) // 主程序{uchar code ledp[4]={0xfe,0xfd,0xfb,0xf7};//预定的写入P1 的值uchar ledi; //用来指示显示顺序uchar i;RCAP2H =0x10; //赋T2 的预置值0x1000,溢出30 次就是1 秒钟RCAP2L =0x00;TR2=1; //启动定时器ET2=1; //打开定时器2 中断EA=1; //打开总中断
上传时间: 2013-11-20
上传用户:ming529
单片机指令系统 3.1 MCS-51指令简介 3.2 指令系统 3.1 MCS-51指令简介 二、MCS-51系列单片机指令系统分类 按寻址方式分为以下七种:按功能分为以下四种: 1、立即立即寻址 1、数据传送指令位操 2、直接寻址 2、算术运算指令 3、寄存器寻址 3、逻辑运算指令 4、寄存器间接寻址指令 4、控制转移类指令 5、相对寻址 5、位操作指令 6、变址寻址 7、位寻址 三、寻址方式 3、寄存器间接寻址 MOV A, @R1 操作数是通过寄存器间接得到的。 4、立即寻址 MOV A, #40H 操作数在指令中直接给出。 5、基址寄存器加变址寄存器寻址 以DPTR或PC为基址寄存器,以A为变址寄存器, 以两者相加形成的16位地址为操作数的地址。 MOVC A, @A+DPTR MOVC A, @A+PC 四、指令中常用符号说明 Rn——当前寄存器区的8个工作寄存器R0~R7(n=0~7); Ri——当前寄存器区可作地址寄存器的2个工作寄存器R0和R1(i=0,1); direct——8位内部数据存储器单元的地址及特殊功能寄存器的地址; #data——表示8位常数(立即数); #datal6——表示16位常数; add 16——表示16位地址; addrll——表示11位地址; rel——8位带符号的地址偏移量; bit——表示位地址; @——间接寻址寄存器或基址寄存器的前缀; ( )——表示括号中单元的内容 (( ))——表示间接寻址的内容; 五、MCS-51指令简介 1. 以累加器A为目的操作数的指令 2. 以Rn为目的操作数的指令 3. 以直接地址为目的操作数的指令 4. 以寄存器间接地址为目的操作数指令 应用举例1 8段数码管显示 应用举例2 3.2 指令系统 2、堆栈操作指令 3. 累加器A与外部数据传输指令 4. 查表指令 MOVC A, @A+PC 例子: 5. 字节交换指令 6. 半字节交换指令 二、算术操作类指令 PSW寄存器 2. 带进位加法指令 3. 加1指令 4. 十进制调整指令 5. 带借位减法指令(Subtraction) 6. 减1指令(Decrease) 7. 乘法指令(Multiplication) 8. 除法指令(Division) 三、逻辑运算指令 1. 简单逻辑操作指令 2. 循环指令 带进位左循环指令(Rotate Accumulator Left through Carry flag) 右循环指令(Rotate Accumulator Right) 带进位右循环指令(Rotate A Right with C) 3. 逻辑与指令 4. 逻辑或指令 5. 逻辑异或指令 四、控制转移类指令 1. 跳转指令 相对转移指令 SJMP rel PC←(PC)+2 PC←(PC)+rel 程序中标号与地址之间的关系 2. 条件转移指令 3. 比较不相等转移指令 4. 减 1 不为 0 转移指令 5. 调用子程序指令 7. 中断返回指令 五、位操作指令 1. 数据位传送指令 2. 位变量逻辑指令 3. 条件转移类指令
上传时间: 2013-10-27
上传用户:xuanjie
8086指令系统目录 概述 2.1节 目录 2.1.1--2.1.5(传送) 2.1.1 目录:1~3 2.1.1-1 mov类例1 mov类例2 mov类例3 mov类例4(END) 2.1.1-2. xchg --3.XLAT 查表示意图(end) 2.1.2堆栈操作指令(1) 堆栈操作指令(2) 堆栈操作指令(3) 堆栈操作指令(4) 堆栈操作指令(5)(END) 2.1.3标志传送指令(1) 标志传送指令(2)(end) 2.1.4地址传送指令(1) 地址传送指令(2) 地址传送指令(3)(end) 2.1.5输入输出指令(1) 输入输出指令(2) 输入输出指令(3)(end) 2.2节 目录 2.2.1--2.2.6(算术) 2.2.1加法指令(1) 加法指令(2) 加法指令(3) 加法指令(4) 加法指令5 end 2.2.2减法指令(1) 减法指令(2) 减法指令(3) 减法指令(4) 减法指令(5) 减法指令(6)(end) 2.2.3乘法指令(1) 乘法指令(2) 乘法指令(3)(end) 2.2.4除法指令(1) 除法指令(2)(end) 2.2.5符号扩展指令(end) 符号扩展说明 2.2.6十进制调整指令(1) 十进制调整指令(2) 十进制调整指令(3) 十进制调整指令(4) 十进制调整指令(5) 十进制调整指令(6) 十进制调整指令(7) 十进制调整指令(8) 十进制调整指令(9)(end) 2.3节 目录 2.3.1--2. 3.3(位) 2.3.1 逻辑运算指令(1) 逻辑运算指令(2) 逻辑运算指令(3) 逻辑运算指令(4) 逻辑运算指令(END) 2.3.2 移位指令(1) 移位指令(2) 移位指令(3) 移位指令(4)(end) 2.3.3 循环移位指令(1) 循环移位指令(2)(end) 2.4节 目录 2.4.1 无条件转移指令(1) 短转移的转移范围 无条件转移指令(2) 无条件转移指令(3) 无条件转移指令(4)(end) 2.4.2 条件转移指令(1) 条件转移指令(2) 条件转移指令(3) 条件转移指令(4) 条件转移指令(5)(end) 2.4.3 循环控制指令(1) 循环控制指令(2)(end) 2.4.4 子程序调用及返回指令(1) 子程序调用及返回指令(2) 子程序调用及返回指令(3) 子程序调用及返回指令(4) 子程序调用及返回指令(5) 子程序调用及返回指令(6) (end) 2.4.5 中断控制指令(1) 中断控制指令(2) 中断控制指令(3) 中断控制指令(4) 中断控制指令(5) 中断控制指令(6) 中断控制指令(7) 中断控制指令(8)(end) 2.4.6 系统功能调用(1) 系统功能调用(2) 系统功能调用(3)(end) 2.5节 目录 1---6(串操作) 串操作(1)传送 串操作(2) 串操作(3) 串操作(4)存串 串操作(5)读串、比较 串操作(6)搜索、重复前缀 串操作(7)REP 串操作(8)REPZ/REPNZ 串操作(9)前缀注释 串操作(10)例题 串操作(11)注释(end) 2.6 处理机控制类指令(1)(end)
上传时间: 2013-10-30
上传用户:大三三
微型51/AVR 编程器套件装配说明书 请您在动手装配这个编程器之前,务必先看完本说明书,避免走弯路。 1.收到套件后请对照元器件列表检查一下,元件、配件是否齐全? Used Part Type Designator ==== ================ ========== 1 1k R6 1 1uf 50V C11 5 2k2 R2 R3 R4 R5 R11 1 10K*8 RN1 2 11.0592MHZ Q1 Q2 1 12V,0.5W D2 2 15k R7 R8 2 21k R9 R10 4 33p C6 C7 C8 C9 1 47uf 25V C10 1 74HC164 IC6 2 78L05 IC4 IC5 1 100uf 25V C12 1 220R R1 1 AT89C51 IC2 1 B40C800(W02) D1 2 BS170 T1 T2 1 BS250 T3 1 DB9/F J2 1 J1X2 J1 1 LED GN5 D3 1 LM317L IC1 1 TLC2272 IC7 1 ZIF40 IC3 5 1uf C1 C2 C3 C4 C5 另外,套件配有1.5米串行电缆一根和配套的PCB一块,不含电源。编程器使用的15V交流电源或12V直流电源需要自己配套。2.装配要点:先焊接阻容元件,3个集成电路插座(IC2,IC7,IC6)其次是晶振, 全桥,稳压IC 等,然后焊接J2,最后焊接T1,T2,T3三只场效应管。焊接场效应管时务必按照以下方法:拔去电烙铁的电源,使用电烙铁余温去焊接三只场效应管,否则静电很容易损坏管子。这是装配成功的关键。这三只管子有问题,最典型的现象是不能联机。由于电源插座封装比较特殊,国内无法配套上,已改用电源线接线柱,可直接焊接在PCB板焊盘上,如下图1所示(在下图中两个红色圆圈内指示的焊盘),然后在连接到套件中配套的电源插座上。最近有朋友反映用15V交流比较麻烦,还要另外配变压器。如果要使用12V的直流电,无需将全桥焊上,将两个接线柱分别焊接在全桥的正负输出位置的焊盘上即可,如下图2所示,蓝色圆圈内指示的焊盘,连接电源的时候要注意正负极,不要接错了。方形焊盘是正极。40脚ZIF插座焊接前,应该将BR1飞线焊接好。注意:由于焊盘比较小,注意焊接温度,不要高温长时间反复焊接,会导致焊盘脱落。
上传时间: 2013-12-31
上传用户:caiguoqing
MCS51单片机内部有4个并行口,当内部并行口不够用时可以外扩并行口芯片。可外扩的并行口芯片很多,分成2类:不可编程的并行口芯片(74LS3734和74LS245)和可编程的并行口芯片(8255)。7.1 不可编程并行口芯片的扩展7.1.1 74LS373的扩展1、 74LS245的结构2、 74LS245的引脚3、 74LS245与89C51的连接 7.1.2 74LS245的扩展 7.2 可编程并行口芯片的扩展 7.2.1 8255的结构7.2.2 8255的引脚7.2.3 8255的工作方式7.2.4 8255的控制字7.2.5 8255的应用
上传时间: 2013-11-13
上传用户:lnnn30
单片机原理与应用教程采用教、学、做相结合的模,以理论为基础、着眼应用,系统详尽地介绍了单片机应用技术所需的基本知识和技能。全书共分9章,包括MCS-51系列单片机的硬件结构、工作原理、指令系统、接口技术、串行通信、中断系统、语言程序设计及各功能部件的组成和应用等。通过学习这些内容,可对MCS-51系列单片机有一个总体的概念和认识,并在掌握基本硬件的基础上用软件实现其功能。 第1章 MCS-51单片机系统结构1.1 单片机概述1.2 MCS-51单片机结构简介1.3 并行I/O接口1.4 单片机的复位电路与时钟电路1.5 单片机的工作方式1.6 构建MCS-51型单片机的最小系统本章小结习题第2章 MCS-51指令系统与程序设计2.1 概述2.2 寻址方式2.3 指令系统2.4 汇编程序设计本章小结 习题第3章 单片机的定时与中断系统3.1 定时器/计数器3.2 中断系统3.3 单片机中断与定时器/计数器的应用训练本章小结习题第4章 串行通信技术4.1 串行通信概念4.2 MCS-51串行通信接口4.3 串行口的扩展应用4.4 串行通信的应用本章小结习题第5章 单片机的系统扩展技术5.1 程序存储器的扩展5.2 数据存储器的扩展5.3 TTL芯片扩展I/O并行接口的应用训练5.4 Intel系列可编程序接口芯片5.5 8155/8156可编程I/O接口应用训练5.6 8253/8254可编程定时器/计数器的应用训练……第6章 单片机接口实用技术及应用第7章 单片机开发系统第8章 单片机应和系统的设计方法第9章 单片机高级语言C51的应用
上传时间: 2013-10-28
上传用户:tzrdcaabb
2.1 MCS-51 单片机并行口结构1.1.1 P0口结构 1.1.2 P1口结构 1.1.3 P2口结构 1.1.4 P3口结构2.2 MCS-51 单片机并行口应用在没有外扩任何芯片时,MCS-51单片机内部并行口可以作为输出口,直接与输出外设连接,常用的输出外设是发光二极管; MCS-51单片机内部并行口也可以作为输入口,直接与输入外设连接,常用的输入外设是开关。1.2.1 直接做输出口 1.2.2 直接做输入口2.3 七段LED显示器接口在单片机控制系统中显示器是必不可少的外设。常用的显示器有发光二极管,数码管和液晶显示器。本节介绍数码管接口。1.3.1 数码管简介 1.3.2 单个七段LED数码管的接口 1.3.3 多个七段LED数码管的接口2.4 键盘接口 键盘是单片机控制系统最常用、最简单的输入设备。用户可以通过键盘输入数据或命令,实现简单的人机通信。 1.4.1 键盘类型 1.4.2 非编码键盘与单片机的接口 1.4.3 矩阵非编码键盘与单片机的接口
上传时间: 2013-10-15
上传用户:阿四AIR
单片机模糊模糊控制是目前在控制领域所采用的三种智能控制方法中最具实际意义的方法。模糊控制的采用解决了大量过去人们无法解决的问题,并且在工业控制、家用电器和各个领域已取得了令人触目的成效。本书是一本系统地介绍模糊控制的理论、技术、方法和应用的著作;内容包括模糊控制基础、模糊控制器、模糊控制系统、模糊控制系统的稳定性、模糊控制系统的开发软件,用单片微型机实现模糊控制的技术和方法,模糊控制在家用电器和工业上应用的实际例子;反映了模糊控制目前的水平。 单片机模糊模糊控制目录 : 第一章 模糊逻辑、神经网络集成电路的发展 1.1 模糊逻辑及其集成电路的发展1.1.1 模糊逻辑的诞生和发展1.1.2 模糊集成电路的发展进程1.2 神经网络及其集成电路的发展1.2.1 神经网络的形成历史1.2.2 神经网络集成电路的发展1.3 模糊逻辑和神经网络的结合1.3.1 模糊逻辑和神经网络结合的意义1.3.2 模糊逻辑和神经网络结合的前景第二章 模糊逻辑及其理论基础 2.1 模糊集合与隶属函数2.1.1 模糊集合概念2.1.2 隶属函数2.1.3 分解定理与扩张定理2.1.4 模糊数2.2 模糊关系、模糊矩阵与模糊变换2.2.1 模糊关系2.2.2 模糊矩阵2.2.3 模糊变换2.3模糊逻辑和函数2.3.1模糊命题2.3.2模糊逻辑2.3.3模糊逻辑函数2.4模糊语言2.4.1 语言及语言的模糊性2.4.2 模糊语言2.4.3 语法规则和算子2.4.4 模糊条件语句2.5 模糊推理2.5.1 模糊推理的CRI法2.5.2 模糊推理的TVR法2.5.3 模糊推理的直接法2.5.4 模糊推理的精确值法2.5.5 模糊推理的强度转移法第三章 模糊控制基础 3.1 模糊控制的系统结构3.2 精确量的模糊化3.2.1 语言变量的分档3.2.2 语言变量值的表示方法3.2.3 精确量转换成模糊量3.3 模糊量的精确化3.3.1 最大隶属度法3.3.2 中位数法3.3.3 重心法3.4 模糊控制规则及控制算法3.4.1 模糊控制规则的格式3.4.2 模糊控制规则的生成3.4.3 模糊控制规则的优化3.4.4 模糊控制算法3.5 模糊控制的神经网络方法3.5.1 神经元和神经网络3.5.2 神经网络的分布存储和容错性3.5.3 神经网络的学习算法3.5.4 神经网络实现的模糊控制3.5.5 神经网络构造隶属函数3.5.6 神经网络存储控制规则3.5.7 神经网络实现模糊化、反模糊化第四章 模糊控制器 4.1 模糊控制器结构4.2 模糊控制器设计4.2.1 常规模糊控制器设计4.2.2 变结构模糊控制器设计4.2.3 自组织模糊控制器设计4.2.4 自适应模糊控制器设计4.3 模糊控制器的数学模型4.3.1 常规模糊控制器的数学模型4.3.2 模糊控制器数学模型的建立第五章 模糊控制系统 5.1 模糊系统的辨识和建模5.1.1 模糊系统辨识的数学基础5.1.2 基于模糊关系方程的模糊模型辨识5.1.3 基于语言控制规则的模糊模型辨识5.2 模糊控制系统的设计5.2.1 模糊控制系统的一般设计过程5.2.2 模糊控制系统的典型设计5.3 模糊控制系统的稳定性5.3.1 稳定性分析的Lyapunov直接法5.3.2 语言规则描述的模糊控制系统的稳定性5.3.3 关系方程描述的模糊控制系统的稳定性第六章 数字单片机与模糊控制6.1 数字单片机MC68HC705P96.1.1 MC68HC705P9单片机性能概论6.1.2 MC68HC705P9单片机基本结构6.1.3 MC68HC705P9指令系统6.2 数字单片机模糊控制方式6.2.1 数字单片机与模糊控制关系6.2.2 数字单片机模糊控制方式第七章 模糊单片机与模糊控制7.1 模糊单片机NLX2307.1.1 模糊单片机NLX230性能概况7.1.2 NLX230的结构及引脚7.1.3 NLX230的模糊推理方式7.1.4 NLX230的内部寄存器7.1.5 NLX230的操作及接口技术7.2 NLX230开发系统7.3 NLX230应用例子第八章 模糊控制的开发软件8.1 模糊推理机原理8.2 模糊推理机的算法8.3 模糊推理机结构和清单8.4 模糊逻辑知识基发生器8.5 模糊推理开发环境8.5.1 FIDE的工作条件8.5.2 FIDE的结构8.5.3 FIDE的工作过程第九章 模糊控制在家用电器中的应用9.1 模糊控制的电冰箱9.1.1 电冰箱模糊控制系统结构9.1.2 模糊控制规则和模糊量9.1.3 控制系统的电路结构9.1.4 控制规则的自调整9.2 模糊控制的电饭锅9.2.1 煮饭的工艺过程曲线9.2.2 模糊控制的逻辑结构9.2.3 模糊量和模糊推理9.2.4 控制软件框图9.3 模糊控制的微波炉9.3.1 控制电路的结构框图9.3.2 微波炉的模糊量与推理9.3.3 微波炉控制电路结构原理9.3.4 控制软件原理及框图9.4 模糊控制的洗衣机9.4.1 模糊洗衣机控制系统逻辑结构9.4.2 模糊洗衣机的模糊推理9.4.3 洗衣机物理量检测方法9.4.4 布质和布量的模糊推理第十章 模糊控制在工程上的应用10.1 模糊参数自适应PID控制器10.1.1 自校正PID控制器10.1.2 模糊参数自适应PID控制系统结构10.1.3 模糊控制规则的产生10.1.4 模糊推理机理及运行结果10.2 恒温炉模糊控制10.2.1 恒温炉模糊控制的系统结构10.2.2 模糊控制器及控制规则的形成10.2.3 模糊控制器的校正10.3 感应电机模糊矢量控制10.3.1 模糊矢量控制系统结构10.3.2 矢量控制的基本原理10.3.3 模糊电阻观测器10.3.4 模糊控制器及运行
上传时间: 2014-12-28
上传用户:semi1981