1.增加的设备支持: Atmel AT91SAM9Rxx Cirrus Logic CS7401xx-IQZ Luminary Micro LM3S576x, LM3S5752, LM3S5747, LM3S573x, LM3S5662, LM3S5652, LM3S5632, LM3S3759, LM3S3749, and LM3S3739 NXP LPC32XX and LPC2460 STMicroelectronics STR912FAZ4X, STR912FAW4X, STR911FAW4X, STR911FAM4X, STR910FAW32, and STR910FAZ32 2.修改了NXP LPC23XX/24XX的头文件库 3.增加了ST-LINK II的调试支持 4.增加了对Cortex-M3 内核芯片的RTX Event Viewer 的支持 5.增加了MCBSTM32: STM32 FLASH OPTION BYTES PROGRAMMING 6.增加了ULINK2对Cortex-M3的SWV功能的调试 7.增强了使用GNU在MDK下调试M1,M3,ARM7,ARM9的调试功能( Using μVision with CodeSourcery GNU ARM Toolchain.) 8.增加了大量经典开发板例程 Boards目录列表: ├─Embest 深圳市英蓓特公司开发板例程 │ ├─AT91EB40X-40008 │ ├─S3CEB2410 │ ├─ATEBSAM7S │ ├─LPC22EB06-I │ ├─LPCEB2000-A │ ├─LPCEB2000-B │ ├─LPCEB2000-S │ ├─str710 │ ├─str711 │ ├─str730 │ ├─str750 │ ├─STR912 │ ├─STM32V100 │ ├─STM32R100 │ ├─ATEB9200 ├─ADI ADI半导体的芯片例程 │ ├─ADuC702X │ └─ADuC712x ├─Atmel Atmel半导体的芯片例程 │ ├─AT91RM9200-EK │ ├─AT91SAM7A3-EK │ ├─AT91SAM7S-EK │ ├─AT91SAM7SE-EK │ ├─AT91SAM7X-EK │ ├─AT91SAM9260-EK │ ├─AT91SAM9261-EK │ ├─AT91SAM9263-EK ├─Keil Keil公司的开发板例程 │ ├─MCB2100 │ ├─MCB2103 │ ├─MCB2130 │ ├─MCB2140 │ ├─MCB2300 │ ├─MCB2400 │ ├─MCB2900 │ ├─MCBLM3S │ ├─MCBSTM32 │ ├─MCBSTR7 │ ├─MCBSTR730 │ ├─MCBSTR750 │ └─MCBSTR9 ├─Luminary Luminary半导体公司的芯片例程 │ ├─ek-lm3s1968 │ ├─ek-lm3s3748 │ ├─ek-lm3s3768 │ ├─dk-lm3s101 │ ├─dk-lm3s102 │ ├─dk-lm3s301 │ ├─dk-lm3s801 │ ├─dk-lm3s811 │ ├─dk-lm3s815 │ ├─dk-lm3s817 │ ├─dk-lm3s818 │ ├─dk-lm3s828 │ ├─ek-lm3s2965 │ ├─ek-lm3s6965 │ ├─ek-lm3s811 │ └─ek-lm3s8962 ├─NXP NXP半导体公司的芯片例程 │ ├─LH79524 │ ├─LH7A404 │ └─SJA2510 ├─OKI OKI半导体公司的芯片例程 │ ├─ML674000 │ ├─ML67Q4003 │ ├─ML67Q4051 │ ├─ML67Q4061 │ ├─ML67Q5003 │ └─ML69Q6203 ├─Samsung Samsung半导体公司的芯片例程 │ ├─S3C2440 │ ├─S3C44001 │ └─S3F4A0K ├─ST ST半导体公司的芯片例程 │ ├─CQ-STARM2 │ ├─EK-STM32F │ ├─STM32F10X_EVAL │ ├─STR710 │ ├─STR730 │ ├─STR750 │ ├─STR910 │ └─STR9_DONGLE ├─TI TI半导体公司的芯片例程 │ ├─TMS470R1A256 │ └─TMS470R1B1M ├─Winbond Winbond半导体公司的芯片例程 │ └─W90P710 └─ ...
上传时间: 2013-10-13
上传用户:zhangliming420
附件是一款PCB阻抗匹配计算工具,点击CITS25.exe直接打开使用,无需安装。附件还带有PCB连板的一些计算方法,连板的排法和PCB联板的设计验验。 PCB设计的經驗建議: 1.一般連板長寬比率為1:1~2.5:1,同時注意For FuJi Machine:a.最大進板尺寸為:450*350mm, 2.針對有金手指的部分,板邊處需作掏空處理,建議不作為連板的部位. 3.連板方向以同一方向為優先,考量對稱防呆,特殊情況另作處理. 4.連板掏空長度超過板長度的1/2時,需加補強邊. 5.陰陽板的設計需作特殊考量. 6.工藝邊需根據實際需要作設計調整,軌道邊一般不少於6mm,實際中需考量板邊零件的排布,軌道設備正常卡壓距離為不少於3mm,及符合實際要求下的連板經濟性. 7.FIDUCIAL MARK或稱光學定位點,一般設計在對角處,為2個或4個,同時MARK點面需平整,無氧化,脫落現象;定位孔設計在板邊,為對稱設計,一般為4個,直徑為3mm,公差為±0.01inch. 8.V-cut深度需根據連板大小及基板板厚考量,角度建議為不少於45°. 9.連板設計的同時,需基於基板的分板方式考量<人工(治具)還是使用分板設備>. 10.使用針孔(郵票孔)聯接:需請考慮斷裂后的毛刺,及是否影響COB工序的Bonding机上的夾具穩定工作,還應考慮是否有無影響插件過軌道,及是否影響裝配組裝.
上传时间: 2014-12-31
上传用户:sunshine1402
注:1.这篇文章断断续续写了很久,画图技术也不精,难免错漏,大家凑合看.有问题可以留言. 2.论坛排版把我的代码缩进全弄没了,大家将代码粘贴到arduino编译器,然后按ctrl+T重新格式化代码格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脉宽调制波,通过调整输出信号占空比,从而达到改 变输出平均电压的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 个8 位精度PWM 引脚,分别是3, 5, 6, 9, 10, 11 脚。我们可以使用analogWrite()控 制PWM 脚输出频率大概在500Hz 的左右的PWM 调制波。分辨率8 位即2 的8 次方等于 256 级精度。但是有时候我们会觉得6 个PWM 引脚不够用。比如我们做一个10 路灯调光, 就需要有10 个PWM 脚。Arduino Duemilanove 2009 有13 个数字输出脚,如果它们都可以 PWM 的话,就能满足条件了。于是本文介绍用软件模拟PWM。 二、Arduino 软件模拟PWM Arduino PWM 调压原理:PWM 有好几种方法。而Arduino 因为电源和实现难度限制,一般 使用周期恒定,占空比变化的单极性PWM。 通过调整一个周期里面输出脚高/低电平的时间比(即是占空比)去获得给一个用电器不同 的平均功率。 如图所示,假设PWM 波形周期1ms(即1kHz),分辨率1000 级。那么需要一个信号时间 精度1ms/1000=1us 的信号源,即1MHz。所以说,PWM 的实现难点在于需要使用很高频的 信号源,才能获得快速与高精度。下面先由一个简单的PWM 程序开始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 这是一个软件PWM 控制Arduino D13 引脚的例子。只需要一块Arduino 即可测试此代码。 程序解析:由for 循环可以看出,完成一个PWM 周期,共循环255 次。 假设bright=100 时候,在第0~100 次循环中,i 等于1 到99 均小于bright,于是输出PWMPin 高电平; 然后第100 到255 次循环里面,i 等于100~255 大于bright,于是输出PWMPin 低电平。无 论输出高低电平都保持30us。 那么说,如果bright=100 的话,就有100 次循环是高电平,155 次循环是低电平。 如果忽略指令执行时间的话,这次的PWM 波形占空比为100/255,如果调整bright 的值, 就能改变接在D13 的LED 的亮度。 这里设置了每次for 循环之后,将bright 加一,并且当bright 加到255 时归0。所以,我们 看到的最终效果就是LED 慢慢变亮,到顶之后然后突然暗回去重新变亮。 这是最基本的PWM 方法,也应该是大家想的比较多的想法。 然后介绍一个简单一点的。思维风格完全不同。不过对于驱动一个LED 来说,效果与上面 的程序一样。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,这段代码少了一个For 循环。它先输出一个高电平,然后维持(bright*30)us。然 后输出一个低电平,维持时间((255-bright)*30)us。这样两次高低就能完成一个PWM 周期。 分辨率也是255。 三、多引脚PWM Arduino 本身已有PWM 引脚并且运行起来不占CPU 时间,所以软件模拟一个引脚的PWM 完全没有实用意义。我们软件模拟的价值在于:他能将任意的数字IO 口变成PWM 引脚。 当一片Arduino 要同时控制多个PWM,并且没有其他重任务的时候,就要用软件PWM 了。 多引脚PWM 有一种下面的方式: int brights[14] = {0}; //定义14个引脚的初始亮度,可以随意设置 int StartPWMPin = 0, EndPWMPin = 13; //设置D0~D13为PWM 引脚 int PWMResolution = 255; //设置PWM 占空比分辨率 void setup() { //定义所有IO 端输出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //随便定义个初始亮度,便于观察 brights[ i ] = random(0, 255); } } void loop() { //这for 循环是为14盏灯做渐亮的。每次Arduino loop()循环, //brights 自增一次。直到brights=255时候,将brights 置零重新计数。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是计数一个PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每个PWM 周期均遍历所有引脚 { if(i < brights[j])\ 所以我们要更改PWM 周期的话,我们将精度(代码里面的变量:PWMResolution)降低就行,比如一般调整LED 亮度的话,我们用64 级精度就行。这样速度就是2x32x64=4ms。就不会闪了。
上传时间: 2013-10-08
上传用户:dingdingcandy
超声波传感器适用于对大幅的平面进行静止测距。普通的超声波传感器测距范围大概是 2cm~450cm,分辨率3mm(淘宝卖家说的,笔者测试环境没那么好,个人实测比较稳定的 距离10cm~2m 左右,超过此距离就经常有偶然不准确的情况发生了,当然不排除笔者技术 问题。) 测试对象是淘宝上面最便宜的SRF-04 超声波传感器,有四个脚:5v 电源脚(Vcc),触发控制端(Trig),接收端(Echo),地端(GND) 附:SRF 系列超声波传感器参数比较 模块工作原理: 采用IO 触发测距,给至少10us 的高电平信号; 模块自动发送8个40KHz 的方波,自动检测是否有信号返回; 有信号返回,通过IO 输出一高电平,高电平持续的时间就是超声波从发射到返回的时间.测试距离=(高电平时间*声速(340m/s))/2; 电路连接方法 Arduino 程序例子: constintTrigPin = 2; constintEchoPin = 3; floatcm; voidsetup() { Serial.begin(9600); pinMode(TrigPin, OUTPUT); pinMode(EchoPin, INPUT); } voidloop() { digitalWrite(TrigPin, LOW); //低高低电平发一个短时间脉冲去TrigPin delayMicroseconds(2); digitalWrite(TrigPin, HIGH); delayMicroseconds(10); digitalWrite(TrigPin, LOW); cm = pulseIn(EchoPin, HIGH) / 58.0; //将回波时间换算成cm cm = (int(cm * 100.0)) / 100.0; //保留两位小数 Serial.print(cm); Serial.print("cm"); Serial.println(); delay(1000); }
上传时间: 2013-10-18
上传用户:星仔
安装方法: 1.查找你机器的“网络标识”(计算机名称)。方法是,鼠标在桌面上点 我的电脑--->属性(右键)--->计算机名--->完整的计算机名称,把名称抄下备用,不要最后那个“点”。 2.进入安装包内MAGNiTUDE文件夹,用记事本打开nx6.lic, 将第1行中的this_host用你机子的计算机名替换,例如我的机子完整的计算机名称NET 则改为SERVER NET ID=20080618 28000(原来为SERVER this_host ID=20080618 28000),改好后存盘备用。 首先你找到MAGNiTUDE下的UG6.LIC并用记事本打开,把里面的his_host改成你的计算机名,注意一个字母都不能错,然后另存一个地方,等会儿要用。接下来安装 1.双击打开Launch.exe 2. 选择第2项“Install License Server安装 3.在这里可以选择安装介面的语言。默认为中文简体。 4. 在安装过程中会提示你寻找license文件,点击NEXT会出错,这时使用浏览(Browse)来找到你刚才改过的那个LIC文件就可以了。继续安装直到结束,目录路径不要 改变,机器默认就行,(建议默认,也可放在其它的盘,但路径不能用中文)。 (可以先不进行括号中的内容,为了防止语言出现错误,建议运行DEMO32,然后选择文件类型为所有,找到你改过的LIC文件,再进行下面的步骤。) 5. 选择第2项“Install NX进行主程序安装。 6. 直接点击下一步。并选择典型方式安装,下一步,会出现语言选择画面,请选 择 Simplified Chinese(简体中文版),默认为英文版。按提示一步一步安装直到结束。 安装路 径可以改变。 7.打开MAGNiTUDE文件夹。 8. 进入MAGNiTUDE文件夹,把UGS\NX6.0文件夹的几个子文件夹复制到安装NX6.0主程序相应的目录 下,覆盖。假如安装到D:\Program Files\UGS\NX 6.0 把NX6.0文件夹内的所有文件夹复制到D:\Program Files\UGS\NX 6.0文件夹相应的文件 进行覆盖就可以。 9. 进入开始-程序-UGS NX6.0-NX6.0打开6.0程序。 注:如果打不开,请按以下步骤操作 进入开始-程序-UGS NX6.0-NX6.0许可程序,打开lmtools,启动服务程序。选择 Start/stop/reread,点一下Stop Server, 再点Start Server,最下面一行显示Server Start Successful. 就OK,然后打开桌面NX6.0。 经过我的实践,绝对可行!
上传时间: 2013-11-09
上传用户:qoovoop
Origin+8.0实用教程-科技作图与数据分析,非常详细
上传时间: 2013-11-09
上传用户:gxrui1991
AL-FGB系列复合式过电压保护器 AL-FGB型三相复合式过电压保护器(简称AL-FGB)是我公司针对现行各类过电压保护器保护弱点而研制的新一代专利产品,将组容吸收器和避雷器的功能有机结合在一起,专用于35KV及以下中压电网中,主要用来吸收真空断路器、真空接触器在开断感性负载时产生的高频操作过电压,同时具有吸收大气过电压及其他形式的暂态冲击过电压的功能; 因此具备一系列其它类型过电压保护器无法比拟的优点。可广泛地应用于真空断路器操作的电动机、电抗器、变压器等配电线路中。 该产品使过电压保护器的整体功能实现了重大突破,是目前功能最全面、保护最完善的产品。符合国家产业政策及国家电气产品无油化、小型化、节能环保等发展趋势,具有显著的技术经济效益和广泛的社会效益,是我国电力建设尤其是城乡电网改造急需的产品。 该产品广泛应用于发电厂、变(配)电站、各种水利设施、矿山、石油、化工、冶金以及其他各类工业企业等。 1、全面抑制雷电和操作过电压的危害,功能强大,保护更全面 在中压电网中,由于真空电器产品(真空断路器、真空接触器、真空负荷开关、真空重合器等)的灭弧能力特别强,在关、合感性负载(发电机、变压器、电抗器和电动机等)时,容易引发截流过电压、多次重燃过电压及三相同时开断过电压。这些操作过电压具有高幅值、高陡度(振荡频率高达105~106HZ),对感性负载的危害性极大,被称为“电机杀手”。 目前各类避雷器和组合式过电压保护器,都是利用氧化锌阀片的残压限制过电压的幅值,只限幅不限频,用来防雷能起到好的效果,但对操作过电压只治标不治本。 AL-FGB内部为氧化锌阀片和电阻电容的有机组合,兼有氧化锌阀片型避雷器与阻容吸收器的优点,从根本上克服了单纯氧化锌阀片型避雷器与阻容吸收器各自不可避免的缺点,不但能够防雷,而且能有效抑制上述操作过电压的幅值和陡度;双效合一,至善尽美。 2、双回路设计,功能互补,相互保护 操作过电压保护阻容回路Ⅰ和避雷保护回路Ⅱ有机结合,保护功能互不干涉,还能相互保护。如图2-1。 当雷电波侵入时,阻容回路Ⅰ不通(但可辅助减缓波头陡度),雷电波按实线路径,经避雷回路Ⅱ泄入大地;同时保护了阻容回路中电容器,避免其因承受过高雷电过电压而击穿。当高频振荡的操作过电压侵入时,则按虚线路径,经阻容回路Ⅰ流通,限幅降频;同时减少避雷回路的动作次数,保护阀片,延长产品寿命。 3、降低陡度,排除匝间击穿危险性; 感性负载的匝间电位梯度与电流陡度(di/dt)成正比,操作过电压陡度极高,对匝间绝缘危害极大,且易使断路器重燃。现场许多事故实例都证明,在操作过电压作用下,电机和变压器的损坏部位大多集中在匝间,且以进线端的匝间为主,这说明高陡度对带绕组的电气设备危害极大。 AL-FGB设计的阻容回路能够有效降低操作过电压的振荡频率,缓解波头陡度,从而降低绕组间的电位梯度,且能减少断路器的重燃机率,成功抑制高陡度对电气设备的危害。 目前同类的过电压保护设备,如避雷器、各类组合式过电压保护器等,对改变操作过电压的振荡频率、降低陡度无能为力,即不能防治高陡度对感性负载匝间造成的损伤。 4、自控接入,环保节能; AL-FGB增加了自控接入装置,在正常运行时仅通过μA级电流,不仅节约电能,而且不向电网提供附加电容电流,保证系统稳定工作。具体参数设计保证其在需要时能够迅速接入电网,保护即时,而且接入电网工频电压性能稳定、分散性小、不受大气条件影响。 设置自控接入装置对消除谐振过电压(注:不超过AL- FGB的承受能力)也具有一定作用。当谐振过电压幅值高至危害电气设备时,AL-FGB接入电网,电容器增大主回路电容,有利于破坏谐振条件,电阻阻尼震荡,有利于降低谐振过电压幅值。 5、免受谐波侵扰,适应的电网运行环境更广; 电网中常含有高次谐波分量,使电容回路的电流异常增大,电阻过热,对过电压保护设备的正常运行不利。 AL-FGB能免受高次谐波侵扰:因为它增加了自控接入装置,在正常运行或发生单相接地异常运行时都与电网隔离,所以可以在高次谐波含量较高的电网中工作,适应的电网运行环境更广。 6、自控脱离,有效控制事故范围; 谐振过电压、间歇性弧光接地过电压等系统过电压,持续时间长、能量大,但幅度和陡度都不是很高。这类系统过电压极易损坏过电压保护设备,出现爆炸等现象。 AL-FGB增加了自控脱离装置,能实现自我保护功能。当系统过电压超过AL-FGB的承受能力时,自控脱离装置选择自我脱离,保护本体,避免出现爆炸的现象,控制事故范围,延长使用寿命,运行更安全更经济。 7、既可保护相对地,又可保护相间; 四极式联接(如图2-2),具体参数设计保证:不仅能保护相对地绝缘,而且能保护相间绝缘。本身为连体结构,体积小,性能稳定,而价格不高。 8、吸收容量大,保护范围更广; 针对35KV电网系统,AL-FGB电容容量高达0.05μF,保护范围完全覆盖该电网系统中的各类电气设备,且裕量充足;针对35KV以下各类电网系统,其电容容量高达0.1μF,吸收容量更大,保护范围更广泛。 9、选材考究,VO级阻燃材质; 9.1 阻容回路 采用具有自愈功能的干式高压电容器,这种电容器真正达到了防护型电容器的各项技术指标,其绝缘水平完全达到了GB311.1—1997标准的要求,该产品能在环境温度上限,1.15UN和1.5IN下长期运行,在2UN下连续运行4小时不出现闪络和击穿;极间选用国外进口的优质、高性能的绝缘材料聚丙烯金属化镀膜为固体介质;各个电容器单元联接后采用阻燃环氧树脂灌封;电性能稳定可靠。 配置散热性能良好的特制非线性无感电阻,可靠性大大提高,从而也大大提高了电力系统运行的可靠性和安全性,使用寿命更长。 9.2 避雷回路 采用非线性伏—安特性十分优异的氧化锌阀片,具有良好的陡波响应特性,残压低、容量大、保护大气过电压可靠性高。 9.3外壳 采用阻燃级别达到最高级别的VO级进口材质,使用更放心。 10、动态记录,清晰掌控设备运行状况; 可根据用户要求选装放电动作记录器,清晰掌控AL-FGB的工作动作状况。
上传时间: 2013-10-17
上传用户:wangjin2945
multisim10.0仿真软件破解版下载:【软件介绍】 Multisim本是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,被美国NI公司收购后,更名为NI Multisim ,而V10.0是其(即NI,National Instruments)最新推出的Multisim最新版本。 目前美国NI公司的EWB的包含有电路仿真设计的模块Multisim、PCB设计软件Ultiboard、布线引擎Ultiroute及通信电路分析与设计模块Commsim 4个部分,能完成从电路的仿真设计到电路版图生成的全过程。Multisim、Ultiboard、Ultiroute及Commsim 4个部分相互独立,可以分别使用。Multisim、Ultiboard、Ultiroute及Commsim 4个部分有增强专业版(Power Professional)、专业版(Professional)、个人版(Personal)、教育版(Education)、学生版(Student)和演示版(Demo)等多个版本,各版本的功能和价格有着明显的差异。 NI Multisim 10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现了“软件即元器件”、“软件即仪器”。NI Multisim 10是一个原理电路设计、电路功能测试的虚拟仿真软件。 NI Multisim 10的元器件库提供数千种电路元器件供实验选用,同时也可以新建或扩充已有的元器件库,而且建库所需的元器件参数可以从生产厂商的产品使用手册中查到,因此也很方便的在工程设计中使用。 NI Multisim 10的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源;而且还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器、逻辑分析仪、逻辑转换器、失真仪、频谱分析仪和网络分析仪等。 NI Multisim 10具有较为详细的电路分析功能,可以完成电路的瞬态分析和稳态分析、 时域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等电路分析方法,以帮助设计人员分析电路的性能。 NI Multisim 10可以设计、测试和演示各种电子电路,包括电工学、模拟电路、数字电路、射频电路及微控制器和接口电路等。可以对被仿真的电路中的元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障情况下的电路工作状况。在进行仿真的同时,软件还可以存储测试点的所有数据,列出被仿真电路的所有元器件清单,以及存储测试仪器的工作状态、显示波形和具体数据等。 NI Multisim 10有丰富的Help功能,其Help系统不仅包括软件本身的操作指南,更要的是包含有元器件的功能解说,Help中这种元器件功能解说有利于使用EWB进行CAI教学。另外,NI Multisim10还提供了与国内外流行的印刷电路板设计自动化软件Protel及电路仿真软件PSpice之间的文件接口,也能通过Windows的剪贴板把电路图送往文字处理系统中进行编辑排版。支持VHDL和Verilog HDL语言的电路仿真与设计。 利用NI Multisim 10可以实现计算机仿真设计与虚拟实验,与传统的电子电路设计与实验方法相比,具有如下特点:设计与实验可以同步进行,可以边设计边实验,修改调试方便;设计和实验用的元器件及测试仪器仪表齐全,可以完成各种类型的电路设计与实验;可方便地对电路参数进行测试和分析;可直接打印输出实验数据、测试参数、曲线和电路原理图;实验中不消耗实际的元器件,实验所需元器件的种类和数量不受限制,实验成本低,实验速度快,效率高;设计和实验成功的电路可以直接在产品中使用。 NI Multisim 10易学易用,便于电子信息、通信工程、自动化、电气控制类专业学生自学、便于开展综合性的设计和实验,有利于培养综合分析能力、开发和创新的能力。 multisim10.0激活码及破解序列号
上传时间: 2013-10-11
上传用户:阳光少年2016
已通过CE认证。(为什么要选择经过CE认证的编程器?) 程速度无与伦比,逼近芯片理论极限。 基本配置48脚流行驱动电路。所选购的适配器都是通用的(插在DIP48锁紧座上),即支持同封装所有类型器件,48脚及以下DIP器件无需适配器直接支持。通用适配器保证快速新器件支持。I/O电平由DAC控制,直接支持低达1.5V的低压器件。 更先进的波形驱动电路极大抑制工作噪声,配合IC厂家认证的算法,无论是低电压器件、二手器件还是低品质器件均能保证极高的编程良品率。编程结果可选择高低双电压校验,保证结果持久稳固。 支持FLASH、EPROM、EEPROM、MCU、PLD等器件。支持新器件仅需升级软件(免费)。可测试SRAM、标准TTL/COMS电路,并能自动判断型号。 自动检测芯片错插和管脚接触不良,避免损坏器件。 完善的过流保护功能,避免损坏编程器。 逻辑测试功能。可测试和自动识别标准TTL/CMOS逻辑电路和用户自定义测试向量的非标准逻辑电路。 丰富的软件功能简化操作,提高效率,避免出错,对用户关怀备至。工程(Project)将用户关于对象器件的各种操作、设置,包括器件型号设定、烧写文件的调入、配置位的设定、批处理命令等保存在工程文件中,每次运行时一步进入写片操作。器件型号选择和文件载入均有历史(History)记录,方便再次选择。批处理(Auto)命令允许用户将擦除、查空、编程、校验、加密等常用命令序列随心所欲地组织成一步完成的单一命令。量产模式下一旦芯片正确插入CPU即自动启动批处理命令,无须人工按键。自动序列号功能按用户要求自动生成并写入序列号。借助于开放的API用户可以在线动态修改数据BUFFER,使每片芯片内容均不同。器件型号选错,软件按照实际读出的ID提示相近的候选型号。自动识别文件格式, 自动提示文件地址溢出。 软件支持WINDOWS98/ME/NT/2000/XP操作系统(中英文)。 器件型号 编程(秒) 校验(秒) P+V (s) Type 28F320W18 9 4.5 13.5 32Mb FLASH 28F640W30 18 9 27 64Mb FLASH AM29DL640E 38.3 10.6 48.9 64Mb FLASH MB84VD21182DA 9.6 2.9 12.5 16Mb FLASH MB84VD23280FA 38.3 10.6 48.9 64Mb FLASH LRS1381 13.3 4.6 19.9 32Mb FLASH M36W432TG 11.8 4.6 16.4 32Mb FLASH MBM29DL323TE 17.5 5.5 23.3 32Mb FLASH AT89C55WD 2.1 1 3.1 20KB MCU P89C51RD2B 4.6 0.9 5.5 64KB MCU
上传时间: 2013-10-18
上传用户:suicoe
换算关系还是简单,不过要算来算去还是需要工具,现在给大家提供的就是它们之间的换算软件。 首先要知道,这几个都是长度单位:foot是英尺,inch是英寸,mil是密耳。 1 mil=0.0254 mm 10 mil=0.254 mm 100 mil=2.54 mm 1 inch=1000 mil= 25.4 mm 1 foot = 12 inch = 304.8 mm=30.48 cm, 而市制单位中,1尺 = 1/3米 = 33.3 cm,二者差不多。 我们经常会听到或看到欧美国家谈论一个人的身高xx英尺xx英寸,可以试着换算一下。
上传时间: 2013-10-09
上传用户:稀世之宝039