建立了一种基于移动最小二乘(Moving Least-Squares MLS)法的曲线曲 面拟合方法这种方法对传统的最小二乘(LS)法的作了比较大的改进使生成的曲线曲面具 有精度高光滑性好等许多优点详细介绍了移动最小二乘法的原理应用和特点并且给 出了使用移动最小二乘法进行曲线曲面拟合的程序设计流程最后给出了曲线拟合和空间散 乱数据曲面拟合算例将拟合结果与最小二乘拟合结果作了比较分析了MLS 拟合曲线曲 面的光滑性和拟合质量表明了该方法的优越性和有效性
标签: Least-Squares Moving MLS LS
上传时间: 2017-07-02
上传用户:xc216
3号作品是分析WarCraft III游戏的replay文件的命令行工具,可以统计玩家的APM等信息,开发平台是gcc (MinGW),其中使用了crc32和zlib库做replay文件的校验与解密。除了代码质量较高外,能启发思路也是我选入这个作品的原因。
上传时间: 2017-07-03
上传用户:firstbyte
本文设计了基于USB 端口的多路语音信号实时采集系统。在详细分析其硬件电路的功用与组成的基础上,给出了软件的流程图及部 分关键程序代码。通过在实验室环境下的系统测试可以得出,该系统具有采集速度快、支持热插拔、多路同时采集与存储、实时显示等优点,可作为对输入信号要求较高的语音信号处理系统输入端
上传时间: 2017-07-11
上传用户:GavinNeko
此源码包含了几十个C加加例题代码,对于初学者有很高的借鉴价值!
上传时间: 2017-07-15
上传用户:liansi
代码用于估计关联维数。包括G-P算法(corrint.m),高斯核关联算法(gka.m) 和Judd算法(judd.m)
上传时间: 2017-07-18
上传用户:2404
在linux系统下开发研究移动通信的工具型代码,内附m序列 walsh函数等完整C程序,有很高的参考学习价值
上传时间: 2013-12-16
上传用户:gououo
书名:代码大全,书中收集的研究和编程经验有助于提高你编程软件的质量。使得开发周期缩短。
标签: 代码大全
上传时间: 2014-12-21
上传用户:yzy6007
遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。 遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。 遗传算法有三个进化算子:选择(复制)、交叉和变异。 SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。 交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。 变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。 遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。 由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。 下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。
标签: 遗传算法
上传时间: 2015-06-04
上传用户:芃溱溱123
随着 国 内 遥感卫星的迅 速发展卫星 图 像的 图 幅越来 越大分辨率越来越高 。 在轨 遥感 图 像的几何 精 度 评价要求从待评遥感 图 像和 多源 参考 图 像之间精确 地提取出 分布 均 匀 的控 制 点 信 息 。 使用 滤波 对高 分辨率影像进 行增强时 , 会 产生过增强 和饱和 现象 影响 了 控制 点 提取效果。 为 了 克 服上述缺陷 提出 了 一 种基于 稀 疏识別的 自 适应 图像增 强算 法。 方法 首先计算 图像子区域的 辐射质量参数并构 建 分类特征 ; 然 后通过 稀疏识别算 法确 定子区域的 地物 类型; 最后根据子区域所属 地物类 型 , 选择不同 的 滤 波 参数 实 现整幅图 像 的 自 适 应增 强 并 在增 强 的 遥感图 像上提 取控制 点 信息 实 现遥感图像 的 几何精 度 自 动 化评价。 结果 针 对资源 三号卫星影 像的 实 验结果表明 针对不同 的 子区域地物 类型进行 自 适 应 增强, 有 效 防 止了 基于全局统一 参 数的 滤波带来 的 过增 强和饱和现象 有 效增强 了 高 分辨 率图像 的纹理。 结论 提出 了 一 种 新的高分 辨率遥 感影像增强 策略 增强了 高 分辨率图 像的 纹理, 提高 了控制 点的 获 取数 目 和 准 确 率。 关键词: 稀疏识别 ; 辐射参数 ; 自 适应 增强; 提取控制 点
上传时间: 2015-11-22
上传用户:chao1020
自考历年试题,代码05169质量管理学试题参考。
标签: 质量管理学 05169
上传时间: 2015-12-10
上传用户:民生JJ