虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

预测模型

预测模型是在采用定量预测法进行预测时,最重要的工作是建立预测数学模型。预测模型是指用于预测的,用数学语言或公式所描述的事物间的数量关系。它在一定程度上揭示了事物间的内在规律性,预测时把它作为计算预测值的直接依据。因此,它对预测准确度有极大的影响。任何一种具体的预测方法都是以其特定的数学模型为特征。预测方法的种类很多,各有相应的预测模型。[1]
  • matlab中的arima模型

    matlab中的arima模型,可用于时间序列数据的分析于预测

    标签: matlab arima 模型

    上传时间: 2014-11-05

    上传用户:FreeSky

  • svm用于预测控制

    svm用于预测控制,建立了各种智能控制模型,很有用的论文。

    标签: svm 预测控制

    上传时间: 2017-07-17

    上传用户:zaizaibang

  • 用Burg法进行功率谱预测的函数

    用Burg法进行功率谱预测的函数,对信号建立AR模型递推估计

    标签: Burg 功率谱 函数

    上传时间: 2017-07-24

    上传用户:leixinzhuo

  • 广义预测控制源程序(单输入单输出)

    广义预测控制源程序(单输入单输出),包含两种情况,对象模型已知和对象模型未知

    标签: 广义预测控制 单输入单输出 源程序

    上传时间: 2014-01-14

    上传用户:jennyzai

  • 运用神经网络预测风速

    运用神经网络预测风速,并提出算法,最后作出比较,说明神经网络是预测的良好模型

    标签: 神经网络 风速

    上传时间: 2013-12-24

    上传用户:lz4v4

  • GM(1,1)模型 matlab仿真

    GM11.m是基于灰色系统理论的GM(1,1)模型编写的,开发软件为matlab(2010b)版。应用范围为所有符合GM(1,1)模型的数据。 具体使用方法:x0为原始数据,需由用户自行输入,输入方式可选择调用txt格式或excel文件格式等。模型中的N值为数列的预测步数, 也由用户根据实际情况输入。 文件已保存成.m文件,故可作为matlab的function直接调用,用户只需使用[yc0]=gm11(x0)语句即可实现调用。

    标签: 灰色系统模型

    上传时间: 2015-04-22

    上传用户:zju104

  • 预测控制程序

    matlab模型预测控制的仿真程序,根据自己算法适当更改就可以使用,有备注哦

    标签: matlab

    上传时间: 2016-04-11

    上传用户:jy00927431

  • 单变量广义预测控制

    该程序是一个广义预测控制的程序,单变量,在线进行模型辨识,采用最小二乘方法

    标签: 单变量 广义预测控制

    上传时间: 2017-05-23

    上传用户:b03330219

  • 基于模型—数据融合的中国区域碳水通量动态模拟及分析

    准确量化和预测陆地生态系统碳水通量对于理解陆气间相互作用,预测未来气候变化和控制温室效应具有重要意义。通量观测和模型模拟是目前研究碳水通量的两种主要方法。通量观测精度较高,但观测范围局限、站点分布不均匀,易受环境影响,难以区域扩展;模型模拟可实现不同尺度参量估算,但由于理想化假设、模型参数和驱动数据等限制,导致其模拟结果往往与真实值存在较大偏差。模型-数据融合方法主要是通过参数估计和数据同化两种技术集成观测和模型信息,建立两者相互制约调节的优化关系,以提高模型结果与真实值之间的匹配程度。基于该思路,本研究在地面观测数据、遥感卫星资料以及相关气候环境数据基础上,重点突破全球动态植被模型(Lund-Potsdam-Jena Dynamic Globa Vegetation Model.LPJ-DGVM)敏感参数优化方法,获取适宜中国的参数化方案:在此基础上,引入数据同化算法,将遥感卫星产品信息与模型相融合,在模拟过程中不断校正原有模型模拟轨迹,提高模型适用性。将以上改进的模型推广至中国区域,实现对20002015年中国地区总初级生产力(Gross Primary Productivity GPP)和敬发(Evapotranspiration,ET的空间格局模拟及分析。主要结论如下1)将LP」DGwM中所选出的22个可调参数(涉及光合、呼吸、水平衡异速生长、死亡、建立以及土壤和掉落物分解共七个作用领域)在各自取值范围内随机获得不同的参数组合,结果表明22个参数可引起GPP和ET模拟结果产生较大的不确定性,尤其集中在生长季。所有站点GPP相对不确定性(Relative Uncertainty,RU)基本保持在09-1.25之间,不具有明显的年际变异性:ET相对不确定性RU月变化趋势明显,且基本处于0.5以下,明显低于GPP,说明所筛选的22个参数对GP模拟产生的影响更为显著。

    标签: 数据融合

    上传时间: 2022-03-16

    上传用户:shjgzh

  • 《统计学习基础 数据挖掘推理与预测》中文版.pdf

    统计学习基础:数据挖掘、推理与预测介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。【内容推荐】《统计学习基础:数据挖掘、推理与预测》试图将学习领域中许多重要的新思想汇集在一起,并且在统计学的框架下解释它们。随着计算机和信息时代的到来,统计问题的规模和复杂性都有了急剧增加。数据存储、组织和检索领域的挑战导致一个新领域“数据挖掘”的产生。数据挖掘是一个多学科交叉领域,涉及数据库技术、机器学习、统计学、神经网络、模式识别、知识库、信息提取、高性能计算等诸多领域,并在工业、商务、财经、通信、医疗卫生、生物工程、科学等众多行业得到了广泛的应用。【作者简介】Trevor Hastie,Robert Tibshirani和Jerome Friedman都是斯坦福大学统计学教授,并在这个领域做出了杰出的贡献。Hastie和Tibshirani提出了广义和加法模型,并出版专著“Generalized Additive Models”。Hastie的主要研究领域为:非参数回归和分类、统计计算以及生物信息学、医学和工业的特殊数据挖掘问题。他提出主曲线和主曲面的概念,并用S-PLUS编写了大量统计建模软件。Tibshirani的主要研究领域为:应用统计学、生物统计学和机器学习。他提出了套索的概念,还是“An Introduction to the Bootstrap”一书的作者之一。Friedman是CART、MARS和投影寻踪等数据挖掘工具的发明人之一。他不仅是位统计学家,而且是物理学家和计算机科学家,先后在物理学、计算机科学和统计学的一流杂志上表发论文80余篇。

    标签: 统计

    上传时间: 2022-05-04

    上传用户: