虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

音频实验

  • ARM9基础实验教程

    - vii - 8.1.1 实验目的 315 8.1.2 实验设备 315 8.1.3 实验内容 315 8.1.4 实验原理 315 8.1.5 实验操作步骤 318 8.1.6 实验参考程序 319 8.1.7 练习题 321- vi - 6.4 USB 接口实验 266 6.4.1 实验目的 266 6.4.2 实验设备 267 6.4.3 实验内容 267 6.4.4 实验原理 267 6.4.5 实验操作步骤 270 6.4.6 实验参考程序 272 6.4.7 实验练习题 280 6.5 SPI接口通讯实验 281 6.5.1 实验目的 281 6.5.2 实验设备 281 6.5.3 实验内容 281 6.5.4 实验原理 281 6.5.5 实验操作步骤 285 6.5.6 实验参考程序 287 6.5.7 练习题 289 6.6 红外模块控制实验 289 6.6.1 实验目的 289 6.6.2 实验设备 289 6.6.3 实验内容 289 6.6.4 实验原理 289 6.6.5 实验操作步骤 291 6.6.6 实验参考程序 291 6.6.7 练习题 296 第七章 基础应用实验 296 7.1 A/D 转换实验 296 7.1.1 实验目的 296 7.1.2 实验设备 296 7.1.3 实验内容 296 7.1.4 实验原理 296 7.1.5 实验设计 298 7.1.6 实验操作步骤 299 7.1.7 实验参考程序 300 7.1.8 练习题 301 7.2 PWM步进电机控制实验 301 7.2.1 实验目的 301 7.2.2 实验设备 301 7.2.3 实验内容 301 7.2.4 实验原理 301 7.2.5 实验操作步骤 309 7.2.6 实验参考程序 311 7.2.7 练习题 313 第八章 高级应用实验 315 8.1 GPRS模块控制实验 315 - v - 5.2 5x4键盘控制实验 219 5.2.1 实验目的 219 5.2.2 实验设备 219 5.2.3 实验内容 219 5.2.4 实验原理 219 5.2.5 实验设计 221 5.2.6 实验操作步骤 222 5.2.7 实验参考程序 223 5.2.8 练习题 224 5.3 触摸屏控制实验 224 5.3.1 实验目的 224 5.3.2 实验设备 224 5.3.3 实验内容 224 5.3.4 实验原理 224 5.3.5 实验设计 231 5.3.6 实验操作步骤 231 5.3.7 实验参考程序 232 5.3.8 练习题 233 第六章 通信与接口实验 234 6.1 IIC 串行通信实验 234 6.1.1 实验目的 234 6.1.2 实验设备 234 6.1.3 实验内容 234 6.1.4 实验原理 234 6.1.5 实验设计 238 6.1.6 实验操作步骤 241 6.1.7 实验参考程序 243 6.1.8 练习题 245 6.2 以太网通讯实验 246 6.2.1 实验目的 246 6.2.2 实验设备 246 6.2.3 实验内容 246 6.2.4 实验原理 246 6.2.5 实验操作步骤 254 6.2.6 实验参考程序 257 6.2.7 练习题 259 6.3 音频接口 IIS 实验 260 6.3.1 实验目的 260 6.3.2 实验设备 260 6.3.3 实验内容 260 6.3.4 实验原理 260 6.3.5 实验步骤 263 6.3.6实验参考程序 264 6.3.7 练习题 266 - iv - 4.4 串口通信实验 170 4.4.1 实验目的 170 4.4.2 实验设备 170 4.4.3 实验内容 170 4.4.4 实验原理 170 4.4.5 实验操作步骤 176 4.4.6 实验参考程序 177 4.4.7 练习题 178 4.5 实时时钟实验 179 4.5.1 实验目的 179 4.5.2 实验设备 179 4.5.3 实验内容 179 4.5.4 实验原理 179 4.5.5 实验设计 181 4.5.6 实验操作步骤 182 4.5.7 实验参考程序 183 4.6.8 练习题 185 4.6 数码管显示实验 186 4.6.1 实验目的 186 4.6.2 实验设备 186 4.6.3 实验内容 186 4.6.4 实验原理 186 4.6.5 实验方法与操作步骤 188 4.6.6 实验参考程序 189 4.6.7 练习题 192 4.7 看门狗实验 193 4.7.1 实验目的 193 4.7.2 实验设备 193 4.7.3 实验内容 193 4.7.4 实验原理 193 4.7.5 实验设计 195 4.7.6 实验操作步骤 196 4.7.7 实验参考程序 197 4.7.8 实验练习题 199 第五章 人机接口实验 200 5.1 液晶显示实验 200 5.1.1 实验目的 200 5.1.2 实验设备 200 5.1.3 实验内容 200 5.1.4 实验原理 200 5.1.5 实验设计 211 5.1.6 实验操作步骤 213 5.1.7 实验参考程序 214 5.1.8 练习题 219 - ii - 3.1.1 实验目的 81 3.1.2 实验设备 81 3.1.3 实验内容 81 3.1.4 实验原理 81 3.1.5 实验操作步骤 83 3.1.6 实验参考程序 87 3.1.7 练习题 88 3.2 ARM汇编指令实验二 89 3.2.1 实验目的 89 3.2.2 实验设备 89 3.2.3 实验内容 89 3.2.4 实验原理 89 3.2.5 实验操作步骤 90 3.2.6 实验参考程序 91 3.2.7 练习题 94 3.3 Thumb 汇编指令实验 94 3.3.1 实验目的 94 3.3.2 实验设备 94 3.3.3 实验内容 94 3.3.4 实验原理 94 3.3.5 实验操作步骤 96 3.3.6 实验参考程序 96 3.3.7 练习题 99 3.4 ARM处理器工作模式实验 99 3.4.1 实验目的 99 3.4.2实验设备 99 3.4.3实验内容 99 3.4.4实验原理 99 3.4.5实验操作步骤 101 3.4.6实验参考程序 102 3.4.7练习题 104 3.5 C 语言程序实验一 104 3.5.1 实验目的 104 3.5.2 实验设备 104 3.5.3 实验内容 104 3.5.4 实验原理 104 3.5.5 实验操作步骤 106 3.5.6 实验参考程序 106 3.5.7 练习题 109 3.6 C 语言程序实验二 109 3.6.1 实验目的 109 3.6.2 实验设备 109 3.6.3 实验内容 109 3.6.4 实验原理 109 - iii - 3.6.5 实验操作步骤 111 3.6.6 实验参考程序 113 3.6.7 练习题 117 3.7 汇编与 C 语言的相互调用 117 3.7.1 实验目的 117 3.7.2 实验设备 117 3.7.3 实验内容 117 3.7.4 实验原理 117 3.7.5 实验操作步骤 118 3.7.6 实验参考程序 119 3.7.7 练习题 123 3.8 综合实验 123 3.8.1 实验目的 123 3.8.2 实验设备 123 3.8.3 实验内容 123 3.8.4 实验原理 123 3.8.5 实验操作步骤 124 3.8.6 参考程序 127 3.8.7 练习题 134 第四章 基本接口实验 135 4.1 存储器实验 135 4.1.1 实验目的 135 4.1.2 实验设备 135 4.1.3 实验内容 135 4.1.4 实验原理 135 4.1.5 实验操作步骤 149 4.1.6 实验参考程序 149 4.1.7 练习题 151 4.2 IO 口实验 151 4.2.1 实验目的 151 4.2.2 实验设备 152 4.2.3 实验内容 152 4.2.4 实验原理 152 4.2.5 实验操作步骤 159 4.2.6 实验参考程序 160 4.2.7 实验练习题 161 4.3 中断实验 161 4.3.1 实验目的 161 4.3.2 实验设备 161 4.3.3 实验内容 161 4.3.4 实验原理 162 4.3.5 实验操作步骤 165 4.3.6 实验参考程序 167 4.3.7 练习题 170 目 录 I 第一章 嵌入式系统开发与应用概述 1 1.1 嵌入式系统开发与应用 1 1.2 基于 ARM的嵌入式开发环境概述 3 1.2.1 交叉开发环境 3 1.2.2 模拟开发环境 4 1.2.3 评估电路板 5 1.2.4 嵌入式操作系统 5 1.3 各种 ARM开发工具简介 5 1.3.1 ARM的 SDT 6 1.3.2 ARM的ADS 7 1.3.3 Multi 2000 8 1.3.4 Embest IDE for ARM 11 1.3.5 OPENice32-A900仿真器 12 1.3.6 Multi-ICE 仿真器 12 1.4 如何学习基于 ARM嵌入式系统开发 13 1.5 本教程相关内容介绍 14 第二章 EMBEST ARM实验教学系统 17 2.1 教学系统介绍 17 2.1.1 Embest IDE 集成开发环境 17 2.1.2 Embest JTAG 仿真器 19 2.1.3 Flash 编程器 20 2.1.4 Embest EduKit-III开发板 21 2.1.5 各种连接线与电源适配器 23 2.2 教学系统安装 23 2.3 教学系统的硬件电路 27 2.3.1 概述 27 2.3.2 功能特点 27 2.3.3 原理说明 28 2.3.4 硬件结构 41 2.3.5 硬件资源分配 44 2.4 集成开发环境使用说明 51 2.4.1 Embest IDE 主框架窗口 51 2.4.2 工程管理 52 2.4.3 工程基本配置 55 2.4.4 工程的编译链接 71 2.4.5 加载调试 72 2.4.6 Flash编程工具 80 第三章 嵌入式软件开发基础实验 81 3.1 ARM汇编指令实验一 81

    标签: ARM9 基础实验 教程

    上传时间: 2013-04-24

    上传用户:xaijhqx

  • 基于FPGA的通用数字化音频处理平台

    目前对数字化音频处理的具体实现主要集中在以DSP或专用ASIC芯片为核心的处理平台的开发方面,存在着并行处理性能差,系统升级和在线配置不灵活等缺点。另一方面现有解决方案的设计主要集中于处理器芯片,而对于音频编解码芯片的关注度较低,而且没有提出过从芯片层到PCB板层的完整设计思路。本文针对上述问题对数字化音频处理平台进行了研究,主要内容包括: 1、提出了基于FPGA的通用音频处理平台,该方案有别于现有的基于MCU、DSP和其它专用ASIC芯片的方案,论证了基于FPGA的音频处理系统的结构及设计工作流程,并对嵌入式音频处理系统专门进行了研究。 2、提出了从芯片层到PCB板层的完整设计思路,并将设计思路得以实现。完成了FPGA的设计及实现过程,包括:系统整体分析,设计流程分析,配置模块和数据通信模块的RTL实现等;解决了FPGA与音频编解码芯片TLV320AIC23B之间接口不匹配问题;给出配置和数据通信模块的功能方框图;从多个角度完善PCB板设计,给出了各个系统组成部分的详细设计方案和硬件电路原理图,并附有PCB图。 3、建立了实验和分析环境,完成了各项实验和分析工作,主要包括:PCB板信号完整性分析和优化,FPGA系统中各个功能模块的实验与分析等。实验和分析结果论证了系统设计的合理性和实用性。 本文的研究与实现工作通过实验和分析得到了验证。结果表明,本文提出的由FPGA和音频编解码芯片TLV320AIC23B组成的数字化音频处理系统完全可以实现音频信号的数字化处理,从而可以将FPGA在数字信号处理领域的优点充分发挥于音频信号处理领域。

    标签: FPGA 通用数字 处理平台 音频

    上传时间: 2013-06-09

    上传用户:gaojiao1999

  • 基于虚拟实验平台的模拟电子技术课程设计开发

    基于模拟电子技术课程设计是电类专业学生重要实践环节的目的,通过介绍模拟电子系统的设计思路,结合音频信号发生器的设计实例,基于虚拟实验平台进行设计及仿真,得到了振荡器起振及等幅振荡过程的正确结果。使学生能够巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,基本掌握常用模拟电路的一般设计方法,通过动脑动手解决实际问题,提高设计能力和动手能力,拓宽学生知识面,为后续课程、各类电子竞赛,毕业设计乃至毕业后的工作打下良好的基础。

    标签: 虚拟实验平台 模拟电子技术 设计开发

    上传时间: 2013-10-16

    上传用户:lunshaomo

  • 凌阳单片机应用实验教学大纲

    实验内容: 1.闪烁的LED实验内容:应用凌阳单片机控制一个LED灯不断闪烁。实验目的:熟悉单片机编程,学习通过IO引脚输出数据。 2.由按键控制的LED实验要求:设计电路,完成用按键控制一个LED的亮与灭。实验目的:进一步熟悉单片机编程,学习IO的输入。 3.定时闪烁的LED实验内容:设计程序,分别控制LED以1Hz、2Hz的速度闪烁。实验目的:学习定时器的使用。 4.自制电子时钟实验内容:设计电路及程序,自行自作一个电子钟。以数码管作为显示。(自选:完成调时功能)实验目的:综合应用之前的实验内容,进一步熟悉掌握输入输出以及定时器的应用。5.AD/DA实验实验内容:(1)设计程序,使单片机输出正弦波。(2)从信号源获得一个正弦信号,采样后输出采样值。实验目的:学习AD/DA的使用。 6.音频播放实验实验内容:压缩一个自选音乐文件,编写程序选择一个方式进行播放。实验目的:掌握音频播放的基本技术及其原理。 7.声音录制与播放实验实验内容:编写程序,按键1后录音,按键2后停止,按键3后播放录音内容。实验目的:掌握声音录制技术及其原理。 8.语音识别实验实验内容:编写程序,完成语音识别。实验目的:掌握语音识别技术。

    标签: 凌阳 单片机应用 实验 教学大纲

    上传时间: 2014-12-27

    上传用户:dapangxie

  • 《微机原理及接口技术》《单片机原理及应用》实验指导书

    目录 第一章    伟福仿真系统说明第一节    伟福仿真系统的使用说明快速入门第一节 分析功能使用第二章 仿真系统构成概述第三章 板上仿真器使用方法第一节 键盘使用说明第二节  脱机仿真第四章  伟福系列实验说明第五章  实验项目软件实验一     存储器块清零软件实验二     二进制到BCD转换软件实验三     二进制到ASCII码转换软件实验四     内存块移动软件实验五     程序跳转表软件实验六     数据排序硬件实验一     P1口输入、输出实验硬件实验二    继电器控制实验硬件实验三    用74LS245读入数据硬件实验四    用74LS273输出数据硬件实验五    音频控制实验硬件实验六    8255输入、输出实验硬件实验七    计数器实验硬件实验八    外部中断实验硬件实验九    定时器实验硬件实验十   外部中断(急救车与交通灯)硬件实验十一  八段数码管显示硬件实验十二  键盘扫描显示实验硬件实验十三  单片机串行口通讯实验硬件实验十四  直流电机控制实验硬件实验十五  步进电机控制实验硬件实验十六  8253计数器实验硬件实验十七  8259外部中断实验硬件实验十八  8253定时器实验硬件实验十九  8251A串行通讯实验附录一       8086实验程序及说明附录二        MCS51实验程序及说明参考书目

    标签: 微机原理 单片机原理 实验指导书 接口技术

    上传时间: 2014-11-23

    上传用户:GHF

  • DSP原理原理与应用实验

    本书根据高等院校工科本科生“DSP 原理与应用”和“DSP 技术”等课程的基本要求编写,主要介绍了以美国TI(Texas Instruments)公司TMS320VC55x 系列芯片为核心的DSP 实验技术。本书从CCS 入门实验开始,安排了软件仿真实验(如正弦波产生、C 语言和汇编语言混合编程、FIR、IIRFFT 等)、硬件仿真实验(如硬件仿真设置、定时器及硬件中断和外围高性能立体声音频编解码芯片实验等)以及实时操作系统DSP/BIOS 和数字图像处理仿真实验。书中各实验所使用的程序都是精心编写并经过认真调试运行的。

    标签: DSP 实验

    上传时间: 2013-11-13

    上传用户:xinzhch

  • 基于LPC2138的AES3数字音频接口设计

         随着数字音频技术的不断发展,数字化音频设备已广泛应用于广播电视节目领域。鉴于专业数字音频设备越来越多地需求,以及专用接收发送设备的复杂性,本设计采用Philips公司的ARM7控制芯片LPC2138结合音响设备专用芯片,设计一个简单的AES/EBU(AES3)数字音频收发系统,实现了专业AES3数字音频的接收与发送。实验显示,在输入1 kHz,24 dBu时,本设计的总谐波失真小于0.005%,信噪比大于90 dBu。  

    标签: 2138 AES3 LPC 数字音频

    上传时间: 2013-11-11

    上传用户:ruan2570406

  • 基于LPC2138的AES3数字音频接口设计

         随着数字音频技术的不断发展,数字化音频设备已广泛应用于广播电视节目领域。鉴于专业数字音频设备越来越多地需求,以及专用接收发送设备的复杂性,本设计采用Philips公司的ARM7控制芯片LPC2138结合音响设备专用芯片,设计一个简单的AES/EBU(AES3)数字音频收发系统,实现了专业AES3数字音频的接收与发送。实验显示,在输入1 kHz,24 dBu时,本设计的总谐波失真小于0.005%,信噪比大于90 dBu。  

    标签: 2138 AES3 LPC 数字音频

    上传时间: 2013-10-20

    上传用户:王庆才

  • 本实验讲述了与多通道缓冲串口(McBSP)相关的寄存器的含义

    本实验讲述了与多通道缓冲串口(McBSP)相关的寄存器的含义,并通过在DSP系统中实现音频扩放系统的自动增益控制(AGC)算法这个例子了解多通道缓冲串口的应用。

    标签: McBSP 实验 多通道缓冲串口 寄存器

    上传时间: 2014-01-18

    上传用户:hphh

  • 基于人工神经网络的数字音频水印算法。 提出了一种新的基于神经网络训练学习的数字音频水印算法

    基于人工神经网络的数字音频水印算法。 提出了一种新的基于神经网络训练学习的数字音频水印算法,采用本算法在一段数字音频 数据中隐藏了一幅不可感知的二值图像.通过后向传播算法的神经网络训练出模板信号与嵌入了水印信号的音频之间的关系特征,由于神经网络具有学习和自适应的特性,通过训练后的神经网络几乎能够完全恢复嵌入到音频中的水印数据.通过仿真实验结果表明该算法具有较好的鲁棒性和抵抗常用的信号处理方法的处理的能力,特别是在水印检测时不需要原始的音频信号.

    标签: 数字音频 水印算法 人工神经网络 神经网络

    上传时间: 2016-02-25

    上传用户:royzhangsz