分类判别中
分类判别中,bayes判别的确具有明显的优势,与模糊,灰色,物元可拓相比,判别准确率一般都会高些,而BP神经网络由于调试麻烦,在调试过程中需要人工参与,而且存在明显的问题,局部极小点和精度与速度的矛盾,以及训练精度和仿真精度间的矛盾,等,尽管是非线性问题的一种重要方法,但是在我们项目中使用存在一定的...
分类判别中,bayes判别的确具有明显的优势,与模糊,灰色,物元可拓相比,判别准确率一般都会高些,而BP神经网络由于调试麻烦,在调试过程中需要人工参与,而且存在明显的问题,局部极小点和精度与速度的矛盾,以及训练精度和仿真精度间的矛盾,等,尽管是非线性问题的一种重要方法,但是在我们项目中使用存在一定的...
了解密度函数参数估计方法和密度函数非参数估计方法; 实现贝叶斯最小错误概率分类器设计方法; ...
无线电感应的应答器和非接触IC卡的原理与应用...
连接器的基本结构、性能和分类...
电源的分类及知识...