《数字信号处理技术的算法分析与应用》本书按照确定性信号、随机信号和时变信号的分析逐步展开,内容包括信号采样技术、数字滤波技术、傅里叶变换和应用、功率谱估计、多采样率信号处理、短时傅里叶变换和小波变换等。
上传时间: 2013-11-29
上传用户:baitouyu
信号处理方面的程序用于随机信号的分析与处理 请大家参考校正
上传时间: 2014-06-20
上传用户:songnanhua
现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用
上传时间: 2016-03-03
上传用户:CHENKAI
随机信号处理—时频分析讲座from Rice University
标签: University from Rice 随机
上传时间: 2014-01-08
上传用户:fandeshun
通过计算机MATLAB仿真分析和研究了维纳滤波器的阶数、信号的噪声方差、随机信号的采样点数、经过维纳滤波的均方误差之间的关系
上传时间: 2014-01-02
上传用户:佳期如梦
labwindows/CVI的虚拟仪器设计(电子版) 本书详细地介绍了应用当前信号分析与处理新技术来设计不同测量功能的虚拟仪器的工作原理和方法。内容包括虚拟仪器设计的方法和步骤,I/O接口设备的软件驱动,LabWindows/CVI与MATLAB语言的接口,以及基于自相关伪随机系统辨识、神经网络、小波变换、模糊理论等技术虚拟仪器设计的方法和技巧。 本书内容新颖丰富、论述简洁,提供了大量典型的实例。本书可作为大专院校教科书,也可作为工程技术人员和科技工作者学习设计虚拟仪器的自学用书。
标签: labwindows CVI 虚拟 仪器设计
上传时间: 2014-12-20
上传用户:15071087253
随机信号处理AR自回归模型,谱分析的一种重要方法
上传时间: 2013-12-25
上传用户:h886166
心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机
上传时间: 2013-04-24
上传用户:weixiao99
PSPICE“交流小信号分析”运用到PWM型开关电源上
上传时间: 2014-12-24
上传用户:tzrdcaabb
振动,噪声动态信号分析中的阶次分析
上传时间: 2013-10-20
上传用户:zhuyibin