在测井过程中,由于测井深度直接影响到其它测井信息的准确性,所以精确的测井深度变得越来越重要。本文针对现有绞车系统的不足(CPU为单片机决定其精度不高、缺少完善的深度校正系统等),首次将DSP与FPGA应用到测井绞车系统中,充分利用FPGA硬件资源丰富、速度快及DSP软件设计灵活的特点,使系统硬件、软件结构更加合理,功能得到增强,性价比进一步提高,从而优化了整个系统,为今后绞车设计提供了新的方法和途径。 本文相对其它绞车系统的设计,主要特点有:设计了比较完善的深度校正模块(深度脉冲校正、根据磁记号与磁定位信号的校正、由张力等原因引起的电缆形变的校正)。将打标和测量一体化。设计了方便的通信接口(校正后的深度脉冲及DSP通过RS232与主测井仪的通信)。使用DSP作为CPU并且配合FPGA作预处理从而提高了测量深度的准确性。电路采用了可编程逻辑器件,提高了电路工作的可靠性,减小了电路板面积。另外,本文在研究电缆绞车系统的同时,对测井的地面信号处理也进行了初步的研究,主要是对趋肤效应的校正做了初步的研究。 本文所完成的是一个完整的测量与打标系统,通过室内与现场实验,得出该系统具有高精度、高智能化等优点。最后,本文对该系统的发展方向作了展望。
上传时间: 2013-07-08
上传用户:星仔
本文简单介绍了脉冲式激光测距原理、相位式激光测距的原理及相位测量技术。根据课题的要求,给出了电路系统设计方案,选择了合适测相系统电路参数,分析了调制波的噪声对系统的影响,计算出能满足系统精度要求的最低信噪比,对偶然误差、信号变化幅度大小、零点漂移和电路的相位延迟等原因引起的测量误差,提出了具体的解决措施,这些措施提高了数字检相电路的测相精度和稳定性。 根据电路系统设计方案,着重对混频电路、整形电路和自动数字检相电路进行了较为深入的分析与讨论,其中自动数字检相电路采用大规模可编程逻辑器件FPGA实现。 文中述叙了利用FPGA实现自动数字检相的原理及方法步骤,分析了FPGA实现鉴相功能的可靠性。根据设计要求,选择合适的FPGA逻辑器件和配置器件,使用QuartusⅡ软件开发可编程逻辑器件及VHDL编程,给出了用QuartusⅡ软件进行数字检相测量的系统仿真结果和混频电路、比较电路、数字检相电路的实验结果,对在没有零角度位置标志信号和没有允许计数标志信号条件下的实验结果的精度进行了分析。根据误差结果分析,提出了下一步研究改进的措施和思路。
上传时间: 2013-04-24
上传用户:yare
频率特性测试仪(简称扫频仪)是一种测试电路频率特性的仪器,它广泛应用于无线电、电视、雷达及通信等领域,为分析和改善电路的性能提供了便利的手段。而传统的扫频仪由多个模块构成,电路复杂,体积庞大,而且在高频测量中,大量的分立元件易受温度变化和电磁干扰的影响。为此,本文提出了集成化设计的方法,针对可编程逻辑器件的特点,对硬件实现方法进行了探索。 本文对三大关键技术进行了深入研究: 第一,由扫频信号发生器的设计出发,对直接数字频率合成技术(DDS)进行了系统的理论研究,并改进了ROM压缩方法,在提高压缩比的同时,改进了DDS系统的杂散度,并且利用该方法实现了幅度和相位可调制的DDS系统-扫频信号发生器。 第二,为了提高系统时钟的工作频率,对流水线算法进行了深入的研究,并针对累加器的特点,进行了一系列的改进,使系统能在100MHz的频率下正常工作。 第三,从系统频率特性测试的理论出发,研究如何在FPGA中提高多位数学运算的速度,从而提出了一种实现多位BCD码除法运算的方法—高速串行BCD码除法;随后,又将流水线技术应用于该算法,对该方法进行改进,完成了基于流水线技术的BCD码除法运算的设计,并用此方法实现了频率特性的测试。 在研究以上理论方法的基础上,以大规模可编程逻辑器件EP1K100QC208和微处理器89C52为实现载体,提出了基于单片机和FPGA体系结构的集成化设计方案;以VerilogHDL为设计语言,实现了频率特性测试仪主要部分的设计。该频率特性测试仪完成扫频信号的输出和频率特性的测试两大主要任务,而扫频信号源和频率特性测试这两大主要模块可集成在一片可编程逻辑器件中,充分体现了可编程逻辑器件的优势。 本文首先对相关的概念理论进行了介绍,包括DDS原理、流水线技术等,进而提出了系统的总体设计方案,包括设计工具、语言和实现载体的选择,而后,简要介绍了微处理器电路和外围电路,最后,较为详细地阐述了两个主要模块的设计,并给出了实现方式。
上传时间: 2013-06-08
上传用户:xiangwuy
随着雷达、图像、通信等领域对信号高速处理的要求,研究人员正寻求高速的数字信号处理算法,以满足这种高速地处理数据的需要。常用的高速实时数字信号处理的器件有ASIC、可编程的数字信号处理芯片、FPGA,等等。 本文研究了时域FPGA上实现高速高阶FIR数字滤波器结构,并实现了高压缩比的LFM脉冲信号的匹配滤波。文章根据FIR数字滤波器理论,分析比较实现了FIR滤波器的方法;使用并行分布式算法,在Xilinx的VirtexⅡFPGA系列芯片上设计了高速高阶FIR滤波器。并详细进行了分析;设计出了一个256阶的线性调频脉冲压缩信号的匹配滤波器设计实例,并用ModelSim软件进行了仿真。
上传时间: 2013-07-18
上传用户:yt1993410
根据雷达、图像、通信等领域对信号高速处理的要求,研究人员正寻求新的高速的数字信号处理实现方法,以满足这种高速地处理数据的需要。 本文对单片FPGA的雷达处理机实现进行了研究。文章根据线性调频信号脉冲压缩理论,选择合适的加窗函数,对线性调频信号进行脉冲压缩,得出仿真结果;完成了雷达信号处理部分的PCB制版;确定了与其他PCB板之间的接口关系;编写了FPGA程序,采用DA算法并根据FIR原理实现32阶滤波器,进行了脉冲压缩处理。
上传时间: 2013-04-24
上传用户:suonidaoke
当前,在系统级互连设计中高速串行I/O技术迅速取代传统的并行I/O技术正成为业界趋势。人们已经意识到串行I/O“潮流”是不可避免的,因为在高于1Gbps的速度下,并行I/O方案已经达到了物理极限,不能再提供可靠和经济的信号同步方法。基于串行I/O的设计带来许多传统并行方法所无法提供的优点,包括:更少的器件引脚、更低的电路板空间要求、减少印刷电路板(PCB)层数、PCB布局布线更容易、接头更小、EMI更少,而且抵抗噪声的能力也更好。高速串行I/O技术正被越来越广泛地应用于各种系统设计中,包括PC、消费电子、海量存储、服务器、通信网络、工业计算和控制、测试设备等。迄今业界已经发展出了多种串行系统接口标准,如PCI Express、串行RapidIO、InfiniBand、千兆以太网、10G以太网XAUI、串行ATA等等。 Aurora协议是为私有上层协议或标准上层协议提供透明接口的串行互连协议,它允许任何数据分组通过Aurora协议封装并在芯片间、电路板间甚至机箱间传输。Aurora链路层协议在物理层采用千兆位串行技术,每物理通道的传输波特率可从622Mbps扩展到3.125Gbps。Aurora还可将1至16个物理通道绑定在一起形成一个虚拟链路。16个通道绑定而成的虚拟链路可提供50Gbps的传输波特率和最大40Gbps的全双工数据传输速率。Aurora可优化支持范围广泛的应用,如太位级路由器和交换机、远程接入交换机、HDTV广播系统、分布式服务器和存储子系统等需要极高数据传输速率的应用。 传统的标准背板如VME总线和CompactPCI总线都是采用并行总线方式。然而对带宽需求的不断增加使新兴的高速串行总线背板正在逐渐取代传统的并行总线背板。现在,高速串行背板速率普遍从622Mbps到3.125Gbps,甚至超过10Gbps。AdvancedTCA(先进电信计算架构)正是在这种背景下作为新一代的标准背板平台被提出并得到快速的发展。它由PCI工业计算机制造商协会(PICMG)开发,其主要目的是定义一种开放的通信和计算架构,使它们能被方便而迅速地集成,满足高性能系统业务的要求。ATCA作为标准串行总线结构,支持高速互联、不同背板拓扑、高信号密度、标准机械与电气特性、足够步线长度等特性,满足当前和未来高系统带宽的要求。 采用FPGA设计高速串行接口将为设计带来巨大的灵活性和可扩展能力。Xilinx Virtex-IIPro系列FPGA芯片内置了最多24个RocketIO收发器,提供从622Mbps到3.125Gbps的数据速率并支持所有新兴的高速串行I/O接口标准。结合其强大的逻辑处理能力、丰富的IP核心支持和内置PowerPC处理器,为企业从并行连接向串行连接的过渡提供了一个理想的连接平台。 本文论述了采用Xilinx Virtex-IIPro FPGA设计传输速率为2.5Gbps的高速串行背板接口,该背板接口完全符合PICMG3.0规范。本文对串行高速通道技术的发展背景、现状及应用进行了简要的介绍和分析,详细分析了所涉及到的主要技术包括线路编解码、控制字符、逗点检测、扰码、时钟校正、通道绑定、预加重等。同时对AdvancedTCA规范以及Aurora链路层协议进行了分析, 并在此基础上给出了FPGA的设计方法。最后介绍了基于Virtex-IIPro FPGA的ATCA接口板和MultiBERT设计工具,可在标准ATCA机框内完成单通道速率为2.5Gbps的全网格互联。
上传时间: 2013-05-29
上传用户:frank1234
本文对G.729语音编码算法的基本原理和实现系统开发方面进行了深入研究。针对G.729语音编码算法在实际应用中存在的一些问题,在大量分析和实验的基础上,提出了新的改进算法。G.729语音编码算法硬件实现方面,国内外现在主要以DSP为实现平台,这是由于DSP以其卓越的运算能力为数字语音信号处理领域的研究及开发提供了有力的工具。但G.729语音编码算法具有计算复杂和数据存储量大的固有缺陷,随着通信量的不断增加和服务的扩展,对G.729语音编码实时性的要求也越来越高。随着微电子制造工艺的发展,越来越多的语音编码平台采用DSP与FPGA或MCU相互结合的系统,通过进行软硬件协同设计提高编码效率。
上传时间: 2013-06-30
上传用户:ccclll
频率合成技术广泛应用于通信、航空航天、仪器仪表等领域。目前,常用的频率合成技术有直接式频率合成,锁相频率合成和直接数字频率合成(DDS)。本次设计是利用FPGA完成一个DDS系统并利用该系统实现模拟信号的数字化调频。 DDS是把一系列数字量形式的信号通过D/A转换形成模拟量形式的信号的合成技术。主要是利用高速存储器作查寻表,然后通过高速D/A转换器产生已经用数字形式存入的正弦波(或其他任意波形)。一个典型的DDS系统应包括:相位累加器,可在时钟的控制下完成相位的累加;相位码—幅度码转换电路,一般由ROM实现;DA转换电路,将数字形式的幅度码转换成模拟信号。DDS系统可以很方便地获得频率分辨率很精细且相位连续的信号,也可以通过改变相位字改变信号的相位,因此也广泛用于数字调频和调相。本次数字化调频的基本思想是利用AD转换电路将模拟信号转换成数字信号,同时用该数字信号与一个固定的频率字累加,形成一个受模拟信号幅度控制的频率字,从而获得一个频率受模拟信号的幅度控制的正弦波,即实现了调频。该DDS数字化调频方案的硬件系统是以FPGA为核心实现的。使用Altera公司的ACEX1K系列FPGA,整个系统由VHDL语言编程,开发软件为MAX+PLUSⅡ。经过实际测试,该系统在频率较低时与理论值完全符合,但在高频时,受器件速度的限制,波形有较大的失真。
上传时间: 2013-06-14
上传用户:ljt101007
数字超声诊断设备在临床诊断中应用十分广泛,研制全数字化的医疗仪器已成为趋势。尽管很多超声成像仪器设计制造中使用了数字化技术,但是我们可以说现代VLSI 和EDA 技术在其中并没有得到充分有效的应用。随着现代电子信息技术的发展,PLD 在很多与B 型超声成像或多普勒超声成像有关的领域都得到了较好的应用,例如数字通信和相控雷达领域。 在研究现代超声成像原理的基础上,我们首先介绍了常见的数字超声成像仪器的基本结构和模块功能,同时也介绍了现代FPGA 和EDA 技术。随后我们详细分析讨论了B 超中,全数字化波束合成器的关键技术和实现手段。我们设计实现了片内高速异步FIFO 以降低采样率,仿真结果表明资源使用合理且访问时间很小。正交检波方法既能给出灰度超声成像所需要的回波的幅值信息,也能给出多普勒超声成像所需要的回波的相移信息。我们设计实现了基于直接数字频率合成原理的数控振荡器,能够给出一对幅值和相位较平衡的正交信号,且在FPGA 片内实现方案简单廉价。数控振荡器输出波形的频率可动态控制且精度较高,对于随着超声在人体组织深度上的穿透衰减,导致回波中心频率下移的声学物理现象,可视作将回波接收机的中心频率同步动态变化进行补偿。 还设计实现了B 型数字超声诊断仪前端发射波束聚焦和扫描控制子系统。在单片FPGA 芯片内部设计实现了聚焦延时、脉宽和重复频率可动态控制的发射驱动脉冲产生器、线扫控制、探头激励控制、功能码存储等功能模块,功能仿真和时序分析结果表明该子系统为设计实现高速度、高精度、高集成度的全数字化超声诊断设备打下了良好的基础,将加快其研发和制造进程,为生物医学电子、医疗设备和超声诊断等方面带来新思路。
上传时间: 2013-06-18
上传用户:hfmm633
激光测距技术被广泛应用于现代工业测量、航空与大地的测量、国防及通信等诸多领域。本文从已获得广泛应用的脉冲激光测距技术入手,重点分析了近年提出的自触发脉冲激光测距技术(STPLR)特别是其中的双自触发脉冲激光测距技术(BSTPLR),通过分析发现其核心部件之一就是用于测量激光脉冲飞行时间(周期)的高精度高速计数器,而目前一般的方式是采用昂贵的进口高速计数器或专用集成电路(ASIC)来完成,这使得激光测距仪在研发、系统的改造升级和自主知识产权保护等诸多方面受到制约,同时在其整体性能上特别是在集成化、小型化和高可靠性方面带来阻碍。为此,本文研究了采用现场可编程门阵列(FPGA)来实现脉冲激光测距中的高精度高速计数及其他相关功能,基本解决了以上存在的问题。 论文通过对双自触发脉冲激光测距的主要技术要求和技术指标进行分析,对其中的信号处理单元采用了FPGA+单片机的设计形式。由FPGA主控芯片(EPF10K20TC144-4)作为周期测量模块,在整个测距系统中是信号处理的核心部件,借助其用户可编程特性及很高的内部时钟频率,设计了专用于BSTPLR的高速高精度计数芯片,负责对测距信号产生电路中的时刻鉴别电路输出信号进行计数。数据处理模块则主要由单片机(AT89C51)来实现。系统可以通过键盘预置门控信号的宽度以均衡测量的精度和速度,测量结果采用7位LED数码管显示。本设计在近距离(大尺寸)范围内实验测试时基本满足设计要求。
上传时间: 2013-06-02
上传用户: