使用二分法求解频散方程,包括频散方程的推导建立以及二分法的精度
上传时间: 2019-05-07
上传用户:jiangjian
【问题描述】已知线性方程组AX=B,求解该方程组。参考算法: 消去法:将列向量B加到矩阵A的最后一列,构成增广矩阵AB。对AB进行下列三种初等变换,使原矩阵A的部分的主对角线上的元素均为1,其余元素均为0,则原列向量B的部分即为X的值: 1. 将矩阵的一行乘以一个不为0的数 2. 将矩阵的一行加上另一行的倍数 3. 交换矩阵中两行的位置
上传时间: 2015-06-18
上传用户:stvnash
1.内存管理一律根据实际需要的大小在堆中动态分配内存。 2.边界检查。如果数组下标超越了数组大小界限,会给出警告信息,可以防止非法内存访问以及方便程序的调试。 3.重载了+,-,*,+=,-=,数乘等常见运算符; 4.可以保存数组为二进制数据文件和文本文件两种形式,也可以从二进制数据文件和文本文件读取数据到数组。 5.实现了和矩阵相关的线性代数方程组求解算法。一是高斯选主元消去法二是针对三对角矩阵的追赶法。 6.静态函数Bspline3():3次B样条曲线插值算法
上传时间: 2015-09-24
上传用户:leixinzhuo
C#编写的三次样条插值函数,TSS法求解对角矩阵方程函数,插值点函数值计算函数。
上传时间: 2014-11-18
上传用户:thuyenvinh
提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。 bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。 由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。
上传时间: 2013-11-30
上传用户:huyiming139
1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991
5.22④ 假设系数矩阵A和B均以三元组表作为存储结构。 试写出满足以下条件的矩阵相加的算法:假设三元组表A 的空间足够大,将矩阵B加到矩阵A上,不增加A、B之外 的附加空间,你的算法能否达到O(m+n)的时间复杂度?其 中m和n分别为A、B矩阵中非零元的数目。
上传时间: 2013-12-13
上传用户:coeus
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-18
上传用户:时代电子小智
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-13
上传用户:qlpqlq
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:wab1981