虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

转差频率

  • 基于EasyFPGA030的简易频率计设计

    本实验要求设计一个简易的频率计,实现对标准的方波信号进行频率测量,并把测量的结果送到8 位的数码管显示,所要求测量范围是1Hz~99999999Hz。整个设计的基本原理就是对1 秒钟之内输入的方波进行计数,把所得数据保存在计数器里,经过译码器处理之后,然后送往数码管显示。这里采用的方案是在采样时钟的上升沿开始计数,然后在下一个上升沿把计数器里的数据送往数码管,并且把计数器清零,让其重新计数。整个方案的实现主要分为四个模块:时钟分频(clk_div)模块、计数器模块(counter)、译码器模块(seg8)、扫描输出(saomiao)模块。

    标签: EasyFPGA 030 频率计设

    上传时间: 2013-11-08

    上传用户:kaixinxin196

  • NXP Cortex-M3 LPC1700系列微控制器简介

    LPC1700系列ARM是基于第二代ARM Cortex-M3内核的微控制器,是为嵌入式系统应用而设计的高性能、低功耗的32位微处理器,适用于仪器仪表、工业通讯、电机控制、灯光控制、报警系统等领域。其操作频率高达100MHz,采用3级流水线和哈佛结构,带独立的本地指令和数据总线以及用于外设的低性能的第三条总线,使得代码执行速度高达1.25MIPS/MHz,并包含1个支持随机跳转的内部预取指单元。

    标签: Cortex-M 1700 NXP LPC

    上传时间: 2013-10-27

    上传用户:wyc199288

  • at91rm9200启动过程教程

    at91rm9200启动过程教程 系统上电,检测BMS,选择系统的启动方式,如果BMS为高电平,则系统从片内ROM启动。AT91RM9200的ROM上电后被映射到了0x0和0x100000处,在这两个地址处都可以访问到ROM。由于9200的ROM中固化了一个BOOTLOAER程序。所以PC从0X0处开始执行这个BOOTLOAER(准确的说应该是一级BOOTLOADER)。这个BOOTLOER依次完成以下步骤: 1、PLL SETUP,设置PLLB产生48M时钟频率提供给USB DEVICE。同时DEBUG USART也被初始化为48M的时钟频率; 2、相应模式下的堆栈设置; 3、检测主时钟源(Main oscillator); 4、中断控制器(AIC)的设置; 5、C 变量的初始化; 6、跳到主函数。 完成以上步骤后,我们可以认为BOOT过程结束,接下来的就是LOADER的过程,或者也可以认为是装载二级BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、连接在外部总线上的8位并行FLASH的顺序依次来找合法的BOOT程序。所谓合法的指的是在这些存储设备的开始地址处连续的存放的32个字节,也就是8条指令必须是跳转指令或者装载PC的指令,其实这样规定就是把这8条指令当作是异常向量表来处理。必须注意的是第6条指令要包含将要装载的映像的大小。关于如何计算和写这条指令可以参考用户手册。一旦合法的映像找到之后,则BOOT程序会把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超过16K-3K的大小。当BOOT程序完成了把合法的映像搬到SRAM的任务以后,接下来就进行存储器的REMAP,经过REMAP之后,SRAM从映设前的0X200000地址处被映设到了0X0地址并且程序从0X0处开始执行。而ROM这时只能在0X100000这个地址处看到了。至此9200就算完成了一种形式的启动过程。如果BOOT程序在以上所列的几种存储设备中找到合法的映像,则自动初始化DEBUG USART口和USB DEVICE口以准备从外部载入映像。对DEBUG口的初始化包括设置参数115200 8 N 1以及运行XMODEM协议。对USB DEVICE进行初始化以及运行DFU协议。现在用户可以从外部(假定为PC平台)载入你的映像了。在PC平台下,以WIN2000为例,你可以用超级终端来完成这个功能,但是还是要注意你的映像的大小不能超过13K。一旦正确从外部装载了映像,接下来的过程就是和前面一样重映设然后执行映像了。我们上面讲了BMS为高电平,AT91RM9200选择从片内的ROM启动的一个过程。如果BMS为低电平,则AT91RM9200会从片外的FLASH启动,这时片外的FLASH的起始地址就是0X0了,接下来的过程和片内启动的过程是一样的,只不过这时就需要自己写启动代码了,至于怎么写,大致的内容和ROM的BOOT差不多,不同的硬件设计可能有不一样的地方,但基本的都是一样的。由于片外FLASH可以设计的大,所以这里编写的BOOTLOADER可以一步到位,也就是说不用像片内启动可能需要BOOT好几级了,目前AT91RM9200上使用较多的bootloer是u-boot,这是一个开放源代码的软件,用户可以自由下载并根据自己的应用配置。总的说来,笔者以为AT91RM9200的启动过程比较简单,ATMEL的服务也不错,不但提供了片内启动的功能,还提供了UBOOT可供下载。笔者写了一个BOOTLODER从片外的FLASHA启动,效果还可以。 uboot结构与使用uboot是一个庞大的公开源码的软件。他支持一些系列的arm体系,包含常见的外设的驱动,是一个功能强大的板极支持包。其代码可以 http://sourceforge.net/projects/u-boot下载 在9200上,为了启动uboot,还有两个boot软件包,分别是loader和boot。分别完成从sram和flash中的一级boot。其源码可以从atmel的官方网站下载。 我们知道,当9200系统上电后,如果bms为高电平,则系统从片内rom启动,这时rom中固化的boot程序初始化了debug口并向其发送'c',这时我们打开超级终端会看到ccccc...。这说明系统已经启动,同时xmodem协议已经启动,用户可以通过超级终端下载用户的bootloader。作为第一步,我们下载loader.bin.loader.bin将被下载到片内的sram中。这个loder完成的功能主要是初始化时钟,sdram和xmodem协议,为下载和启动uboot做准备。当下载了loader.bin后,超级终端会继续打印:ccccc....。这时我们就可以下在uboot了。uboot将被下载到sdram中的一个地址后并把pc指针调到此处开始执行uboot。接着我们就可以在终端上看到uboot的shell启动了,提示符uboot>,用户可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了对内存、flash、网络、系统启动等一些命令。 如果系统上电时bms为低电平,则系统从片外的flash启动。为了从片外的flash启动uboot,我们必须把boot.bin放到0x0地址出,使得从flash启动后首先执行boot.bin,而要少些boot.bin,就要先完成上面我们讲的那些步骤,首先开始从片内rom启动uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz烧写到flash中的目的,假如我们已经启动了uboot,可以这样操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系统复位,就可以看到系统先启动boot,然后解压缩uboot.gz,然后启动uboot。注意,这里uboot必须压缩成.gz文件,否则会出错。 怎么编译这三个源码包呢,首先要建立一个arm的交叉编译环境,关于如何建立,此处不予说明。建立好了以后,分别解压源码包,然后修改Makefile中的编译器项目,正确填写你的编译器的所在路径。 对loader和boot,直接make。对uboot,第一步:make_at91rm9200dk,第二步:make。这样就会在当前目录下分别生成*.bin文件,对于uboot.bin,我们还要压缩成.gz文件。 也许有的人对loader和boot搞不清楚为什么要两个,有什么区别吗?首先有区别,boot主要完成从flash中启动uboot的功能,他要对uboot的压缩文件进行解压,除此之外,他和loader并无大的区别,你可以把boot理解为在loader的基础上加入了解压缩.gz的功能而已。所以这两个并无多大的本质不同,只是他们的使命不同而已。 特别说名的是这三个软件包都是开放源码的,所以用户可以根据自己的系统的情况修改和配置以及裁减,打造属于自己系统的bootloder。

    标签: 9200 at 91 rm

    上传时间: 2013-10-27

    上传用户:wsf950131

  • LPC1700系列ARM基于第二代ARM Cortex-M3

    LPC1700系列ARM是基于第二代ARM Cortex-M3内核的微控制器,是为嵌入式系统应用而设计的高性能、低功耗的32位微处理器,适用于仪器仪表、工业通讯、电机控制、灯光控制、报警系统等领域。其操作频率高达100MHz,采用3级流水线和哈佛结构,带独立的本地指令和数据总线以及用于外设的低性能的第三条总线,使得代码执行速度高达1.25MIPS/MHz,并包含1个支持随机跳转的内部预取指单元。

    标签: ARM Cortex-M 1700 LPC

    上传时间: 2013-11-17

    上传用户:lbbyxmraon

  • NCV8675带复位和复位延时的低压差线性稳压产品简介手册

    NCV8675是一个精准的5.0V和3.3V固定输出的低压差线性稳压器,同时具有350mA的电流输出能力。对轻负载电流消耗的精细管理,加上低漏电工艺,使得NCV8675的静态接地电流仅为34μA。

    标签: 8675 NCV 复位 低压差

    上传时间: 2013-11-04

    上传用户:小草123

  • NCV8665带复位和复位延时的低压差线性稳压产品简介手册

    NCV8665是一款精准的5.0V固定输出的低压差线性稳压器,其具有150mA的电流输出能力。对轻负载电流消耗的精密管理,加上低漏电工艺,使得NCV8665的静态接地电流仅为30μA。

    标签: 8665 NCV 复位 低压差

    上传时间: 2013-11-04

    上传用户:sjyy1001

  • 单片机入门基础知识大全免费下载

    单片机入门基础知识大全免费下载 单片机第八课(寻址方式与指令系统) 通过前面的学习,我们已经了解了单片机内部的结构,并且也已经知道,要控制单片机,让它为我们干学,要用指令,我们已学了几条指令,但很零散,从现在开始,我们将要系统地学习8051的指令部份。 一、概述 1、指令的格式 我们已知,要让计算机做事,就得给计算机以指令,并且我们已知,计算机很“笨”,只能懂得数字,如前面我们写进机器的75H,90H,00H等等,所以指令的第一种格式就是机器码格式,也说是数字的形式。但这种形式实在是为难我们人了,太难记了,于是有另一种格式,助记符格式,如MOV P1,#0FFH,这样就好记了。 这两种格式之间的关系呢,我们不难理解,本质上它们完全等价,只是形式不一样而已。 2、汇编 我们写指令使用汇编格式,而计算机只懂机器码格式,所以要将我们写的汇编格式的指令转换为机器码格式,这种转换有两种方法:手工汇编和机器汇编。手工汇编实际上就是查表,因为这两种格式纯粹是格式不同,所以是一一对应的,查一张表格就行了。不过手工查表总是嫌麻烦,所以就有了计算机软件,用计算机软件来替代手工查表,这就是机器汇编。 二、寻址 让我们先来复习一下我们学过的一些指令:MOV P1,#0FFH,MOV R7,#0FFH这些指令都是将一些数据送到相应的位置中去,为什么要送数据呢?第一个因为送入的数可以让灯全灭掉,第二个是为了要实现延时,从这里我们可以看出来,在用单片机的编程语言编程时,经常要用到数据的传递,事实上数据传递是单片机编程时的一项重要工作,一共有28条指令(单片机共111条指令)。下面我们就从数据传递类指令开始吧。 分析一下MOV P1,#0FFH这条指令,我们不难得出结论,第一个词MOV是命令动词,也就是决定做什么事情的,MOV是MOVE少写了一个E,所以就是“传递”,这就是指令,规定做什么事情,后面还有一些参数,分析一下,数据传递必须要有一个“源”也就是你要送什么数,必须要有一个“目的”,也就是你这个数要送到什么地方去,显然在上面那条指令中,要送的数(源)就是0FFH,而要送达的地方(目的地)就是P1这个寄存器。在数据传递类指令中,均将目的地写在指令的后面,而将源写在最后。 这条指令中,送给P1是这个数本身,换言之,做完这条指令后,我们可以明确地知道,P1中的值是0FFH,但是并不是任何时候都可以直接给出数本身的。例如,在我们前面给出的延时程序例是这样写的: MAIN: SETB P1.0     ;(1)    LCALL DELAY ;(2)     CLR P1.0      ;(3)    LCALL DELAY   ;(4)     AJMP MAIN    ;(5) ;以下子程序 DELAY: MOV R7,#250   ;(6) D1: MOV R6,#250   ;(7) D2: DJNZ R6,D2    ;(8)    DJNZ R7,D1   ;(9)    RET        ;(10)    END        ;(11)     表1  MAIN: SETB P1.0     ;(1)    MOV 30H,#255     LCALL DELAY ;     CLR P1.0      ;(3)     MOV 30H,#200     LCALL DELAY   ;(4)     AJMP MAIN    ;(5) ;以下子程序 DELAY: MOV R7,30H   ;(6) D1: MOV R6,#250   ;(7) D2: DJNZ R6,D2    ;(8)    DJNZ R7,D1   ;(9)    RET        ;(10)    END        ;(11) 表2    这样一来,我每次调用延时程序延时的时间都是相同的(大致都是0.13S),如果我提出这样的要求:灯亮后延时时间为0.13S灯灭,灯灭后延时0.1秒灯亮,如此循环,这样的程序还能满足要求吗?不能,怎么办?我们可以把延时程序改成这样(见表2):调用则见表2中的主程,也就是先把一个数送入30H,在子程序中R7中的值并不固定,而是根据30H单元中传过来的数确定。这样就可以满足要求。 从这里我们可以得出结论,在数据传递中要找到被传递的数,很多时候,这个数并不能直接给出,需要变化,这就引出了一个概念:如何寻找操作数,我们把寻找操作数所在单元的地址称之为寻址。在这里我们直接使用数所在单元的地址找到了操作数,所以称这种方法为直接寻址。除了这种方法之外,还有一种,如果我们把数放在工作寄存器中,从工作寄存器中寻找数据,则称之为寄存器寻址。例:MOV A,R0就是将R0工作寄存器中的数据送到累加器A中去。提一个问题:我们知道,工作寄存器就是内存单元的一部份,如果我们选择工作寄存器组0,则R0就是RAM的00H单元,那么这样一来,MOV A,00H,和MOV A,R0不就没什么区别了吗?为什么要加以区分呢?的确,这两条指令执行的结果是完全相同的,都是将00H单元中的内容送到A中去,但是执行的过程不同,执行第一条指令需要2个周期,而第二条则只需要1个周期,第一条指令变成最终的目标码要两个字节(E5H 00H),而第二条则只要一个字节(E8h)就可以了。 这么斤斤计较!不就差了一个周期吗,如果是12M的晶振的话,也就1个微秒时间了,一个字节又能有多少? 不对,如果这条指令只执行一次,也许无所谓,但一条指令如果执行上1000次,就是1毫秒,如果要执行1000000万次,就是1S的误差,这就很可观了,单片机做的是实时控制的事,所以必须如此“斤斤计较”。字节数同样如此。 再来提一个问题,现在我们已知,寻找操作数可以通过直接给的方式(立即寻址)和直接给出数所在单元地址的方式(直接寻址),这就够了吗? 看这个问题,要求从30H单元开始,取20个数,分别送入A累加器。 就我们目前掌握的办法而言,要从30H单元取数,就用MOV A,30H,那么下一个数呢?是31H单元的,怎么取呢?还是只能用MOV A,31H,那么20个数,不是得20条指令才能写完吗?这里只有20个数,如果要送200个或2000个数,那岂不要写上200条或2000条命令?这未免太笨了吧。为什么会出现这样的状况?是因为我们只会把地址写在指令中,所以就没办法了,如果我们不是把地址直接写在指令中,而是把地址放在另外一个寄存器单元中,根据这个寄存器单元中的数值决定该到哪个单元中取数据,比如,当前这个寄存器中的值是30H,那么就到30H单元中去取,如果是31H就到31H单元中去取,就可以解决这个问题了。怎么个解决法呢?既然是看的寄存器中的值,那么我们就可以通过一定的方法让这里面的值发生变化,比如取完一个数后,将这个寄存器单元中的值加1,还是执行同一条指令,可是取数的对象却不一样了,不是吗。通过例子来说明吧。    MOV R7,#20    MOV R0,#30H LOOP:MOV A,@R0    INC R0    DJNZ R7,LOOP 这个例子中大部份指令我们是能看懂的,第一句,是将立即数20送到R7中,执行完后R7中的值应当是20。第二句是将立即数30H送入R0工作寄存器中,所以执行完后,R0单元中的值是30H,第三句,这是看一下R0单元中是什么值,把这个值作为地址,取这个地址单元的内容送入A中,此时,执行这条指令的结果就相当于MOV A,30H。第四句,没学过,就是把R0中的值加1,因此执行完后,R0中的值就是31H,第五句,学过,将R7中的值减1,看是否等于0,不等于0,则转到标号LOOP处继续执行,因此,执行完这句后,将转去执行MOV A,@R0这句话,此时相当于执行了MOV A,31H(因为此时的R0中的值已是31H了),如此,直到R7中的值逐次相减等于0,也就是循环20次为止,就实现了我们的要求:从30H单元开始将20个数据送入A中。 这也是一种寻找数据的方法,由于数据是间接地被找到的,所以就称之为间址寻址。注意,在间址寻址中,只能用R0或R1存放等寻找的数据。 二、指令 数据传递类指令 1) 以累加器为目的操作数的指令 MOV A,Rn MOV A,direct MOV A,@Ri MOV A,#data 第一条指令中,Rn代表的是R0-R7。第二条指令中,direct就是指的直接地址,而第三条指令中,就是我们刚才讲过的。第四条指令是将立即数data送到A中。 下面我们通过一些例子加以说明: MOV A,R1 ;将工作寄存器R1中的值送入A,R1中的值保持不变。 MOV A,30H ;将内存30H单元中的值送入A,30H单元中的值保持不变。 MOV A,@R1 ;先看R1中是什么值,把这个值作为地址,并将这个地址单元中的值送入A中。如执行命令前R1中的值为20H,则是将20H单元中的值送入A中。 MOV A,#34H ;将立即数34H送入A中,执行完本条指令后,A中的值是34H。 2)以寄存器Rn为目的操作的指令 MOV Rn,A   MOV Rn,direct   MOV Rn,#data 这组指令功能是把源地址单元中的内容送入工作寄存器,源操作数不变。

    标签: 单片机 免费下载 基础知识

    上传时间: 2013-10-13

    上传用户:3294322651

  • 基于单片机的红外转射频遥控系统

    基于C51 单片机设计了一种红外转射频的遥控系统,在不改变红外遥控对象原有内部电路的基础上,实现了将红外遥控转换为射频遥控的功能。这种遥控系统可以增加遥控的距离,扩展遥控对象的种类和数量。经实验证明,可以达到预期的目的。

    标签: 单片机 红外转射频遥

    上传时间: 2014-12-28

    上传用户:a1054751988

  • 6位数显频率计数器工作原理及实验

      利用AT89S51单片机的T0、T1的定时计数器功能,来完成对输入的信号进行频率计数,计数的频率结果通过8位动态数码管显示出来。要求能够对0-250KHZ的信号频率进行准确计数,计数误差不超过±1HZ。

    标签: 数显 工作原理 实验 频率计数器

    上传时间: 2013-10-18

    上传用户:XLHrest

  • 简易频率计设计

    本实验要求设计一个简易的频率计,实现对标准的方波信号进行频率测量,并把测量的结果送到8 位的数码管显示,所要求测量范围是1Hz~99999999Hz。整个设计的基本原理就是对1 秒钟之内输入的方波进行计数,把所得数据保存在计数器里,经过译码器处理之后,然后送往数码管显示。这里采用的方案是在采样时钟的上升沿开始计数,然后在下一个上升沿把计数器里的数据送往数码管,并且把计数器清零,让其重新计数。整个方案的实现主要分为四个模块:时钟分频(clk_div)模块、计数器模块(counter)、译码器模块(seg8)、扫描输出(saomiao)模块

    标签: 频率计设

    上传时间: 2013-11-20

    上传用户:avensy