The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa. For example, >> project.name = MyProject >> project.id = 1234 >> project.param.a = 3.1415 >> project.param.b = 42 becomes with str=xml_format(project, off ) "<project> <name>MyProject</name> <id>1234</id> <param> <a>3.1415</a> <b>42</b> </param> </project>" On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).
标签: converts Toolbox complex logical
上传时间: 2016-02-12
上传用户:a673761058
Java来 自 于Sun公 司 的 一 个 叫Green的 项 目, 其 原 先 的 目 的 是 为 家 用 消 费 电 子 产 品 开 发 一 个 分 布 式 代 码 系 统, 这 样 我 们 可 以 把E-mail发 给 电 冰 箱、 电 视 机 等 家 用 电 器, 对 它 们 进 行 控 制, 和 它 们 进 行 信 息 交 流。 开 始, 准 备 采 用C++,但C++太 复 杂, 安 全 性 差, 最 后 基 于C++开 发 一 种 新 的 语 言Oak(Java的 前 身),Oak是 一 种 用 于 网 络 的 精 巧 而 安 全 的 语 言,Sun公 司 曾 依 此 投 标 一 个 交 互 式 电 视 项 目, 但 结 果 是 被SGI打 败。 可 怜 的Oak几 乎 无 家 可 归, 恰 巧 这 时Mark Ardreesen开 发 的Mosaic和Netscape启 发 了Oak项 目 组 成 员, 他 们 用Java编 制 了HotJava浏 览 器, 得 到 了Sun公 司 首 席 执 行 官Scott McNealy的 支 持, 触 发 了Java进 军Internet。 Java的 取 名 也 有 一 个 趣 闻, 有 一 天, 几 位Java成 员 组 的 会 员 正 在 讨 论 给 这 个 新 的 语 言 取 什 么 名 字, 当 时 他 们 正 在 咖 啡 馆 喝 着 Java(爪 哇) 咖 啡, 有 一 个 人 灵 机 一 动 说 就 叫Java怎 样, 得 到 了 其 他 人 的 赞 赏, 于 是,Java这 个 名 字 就 这 样 传 开 了。
上传时间: 2014-01-21
上传用户:李彦东
汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
标签: the animation Simulate movement
上传时间: 2017-02-11
上传用户:waizhang
一个利用脉宽控制可控硅电流以达到控制灯的亮度程序,也可应于控制电振机(产品用)
上传时间: 2014-12-20
上传用户:TF2015
将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)
上传时间: 2013-12-19
上传用户:aix008
本代码为编码开关代码,编码开关也就是数字音响中的 360度旋转的数字音量以及显示器上用的(单键飞梭开 关)等类似鼠标滚轮的手动计数输入设备。 我使用的编码开关为5个引脚的,其中2个引脚为按下 转轮开关(也就相当于鼠标中键)。另外3个引脚用来 检测旋转方向以及旋转步数的检测端。引脚分别为a,b,c b接地a,c分别接到P2.0和P2.1口并分别接两个10K上拉 电阻,并且a,c需要分别对地接一个104的电容,否则 因为编码开关的触点抖动会引起轻微误动作。本程序不 使用定时器,不占用中断,不使用延时代码,并对每个 细分步数进行判断,避免一切误动作,性能超级稳定。 我使用的编码器是APLS的EC11B可以参照附件的时序图 编码器控制流水灯最能说明问题,下面是以一段流水 灯来演示。
上传时间: 2017-07-03
上传用户:gaojiao1999
【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。
标签: 点阵
上传时间: 2014-06-21
上传用户:llandlu
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
一种新颖的正弦正交编码器细分方法摘要,提出了一种不用查询表的正弦正交编码器细分方法利用控制系统临界稳定原理生成一个高频数字正弦载波与采样得到的正弦编码信号实时比较来获取相位信息,与传统查询表细分方法相比,节省了大量的存储空间而且整个细分过程通过软件实现,不需要添加额外的硬件,同时阐述了影响细分分辨率的因素,推导出了防止电机高速运行时细分混登的条件;最后,以一台7kw的电梯用永磁同步电机配套海德汉的ERN487-2048正弦增量式编码器为平台,验证了该细分方法用于转子初始位置识别及速度控制的可行性.关键词,正弦编码器,细分,永磁同步电机,电梯,转子初始位置随着社会的发展人们对电梯的体积载重量功耗调速精度及调速范围等提出了越来越高的要求永磁同步电机以功率密度大气隙密度高转矩电流比高转矩惯量比大寿命长及结构简单等优点成为无齿轮电引机的首选 对于正弦波永磁同0步电机矢量控制系统坐标变换中的转子位置角是否能准确实时地检测直接影响到整个系统的性能因此高性能要求的系统一般采用分辨率高的光电式编码器检测转子位置.
标签: 正弦正交编码器
上传时间: 2022-06-18
上传用户: