(1) 、用下述两条具体规则和规则形式实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (2) 、B→tAdA A→sae (3) 、将魔王语言B(ehnxgz)B解释成人的语言.每个字母对应下列的语言.
上传时间: 2013-12-30
上传用户:ayfeixiao
模拟实现银行家算法,用银行家算法实现资源分配。设计五个进程{P0,P1,P2,P3,P4}共享三类资源{A,B,C}的系统,{A,B,C}的资源数量分别为10,5,7。进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
上传时间: 2013-12-26
上传用户:金宜
1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991
1. 下列说法正确的是 ( ) A. Java语言不区分大小写 B. Java程序以类为基本单位 C. JVM为Java虚拟机JVM的英文缩写 D. 运行Java程序需要先安装JDK 2. 下列说法中错误的是 ( ) A. Java语言是编译执行的 B. Java中使用了多进程技术 C. Java的单行注视以//开头 D. Java语言具有很高的安全性 3. 下面不属于Java语言特点的一项是( ) A. 安全性 B. 分布式 C. 移植性 D. 编译执行 4. 下列语句中,正确的项是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上传时间: 2017-01-04
上传用户:netwolf
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230
摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。
上传时间: 2013-11-06
上传用户:smallfish
摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。
上传时间: 2013-10-13
上传用户:lml1234lml
银行家算法c语言的实现,该算法可检验进程的资源请求能不能被系统满足,并展示各种资源的分配情况,从而避免系统进入不安全状态。
上传时间: 2013-11-26
上传用户:kiklkook
程序说明:浮点数变为压缩BCD码,保存在以数组中 第1字节的位7:0正,1负.位6:0(位5--0代表小数点前的位数),1(位5--0代表小数 点后0的位数) 2--4字节为压缩BCD码,有效位为7位,3个半字节,最后半个字节请使用者自行放 弃 程序占用资源PSW,A,B,DPTR,R0--R7,SP深度6,RAM 5个放数据 keil 兼容,调用KEIL 的FPMUL子程序。 程序作者:*************陈远征************** 目 的:追求更快的执行速度,与最小的程序代码 发布时间:2003--05--08 编写背景:精通汇编,研究C51半个月。身感C51方便中的不便 研究了几种汇编及KEIL的浮点算法,特做此程序. 声 明:转载时请保留以上的信息
上传时间: 2016-07-20
上传用户:磊子226
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789