一种多约束条件下路径规划算法研究
针对目前导航系统中重要的多约束条件下路径规划功能,结合A*算法和蚁群算法提出一种新的不确定算法,该算法首先将多约束条件进行融合使其适合蚁群转移,并在基本蚁群算法基础上采用了A*算法的评估指标,为蚁群转移时提供最优预测收敛点。通过实验证明该算法可以大幅度降低时...
针对目前导航系统中重要的多约束条件下路径规划功能,结合A*算法和蚁群算法提出一种新的不确定算法,该算法首先将多约束条件进行融合使其适合蚁群转移,并在基本蚁群算法基础上采用了A*算法的评估指标,为蚁群转移时提供最优预测收敛点。通过实验证明该算法可以大幅度降低时...
纯方位定位算法,所提供的代码极为有用,对研究数据融合的人不妨可以试一下。...
LVQ(学习矢量量化)算法:它是Kohonen的有监督学习的扩展形式,融合了自组织和有导师监督的技术。...
卡尔曼滤波C程序 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。 对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制, 传感器数据融合甚至在军事方面...
卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。 对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制, 传感器数据融合甚至在军事方面的雷达系统以及导弹...