虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

蒙特卡罗模拟

  • 巨正则系综蒙特卡罗算法的源程序;可以用来进行吸附等分子模拟;最大的好处在于可以插入或删除原子

    巨正则系综蒙特卡罗算法的源程序;可以用来进行吸附等分子模拟;最大的好处在于可以插入或删除原子

    标签: 分子 模拟 删除

    上传时间: 2014-11-23

    上传用户:ommshaggar

  • g(x)=f(m,n,L), 其中,m,n,L均服从正态分布,分布情况也在所给的图中. 使用matlab,用蒙特卡罗模拟法 对该函数进行模拟,得出g(x)大于0的概率.

    g(x)=f(m,n,L), 其中,m,n,L均服从正态分布,分布情况也在所给的图中. 使用matlab,用蒙特卡罗模拟法 对该函数进行模拟,得出g(x)大于0的概率.

    标签: matlab 分布 函数

    上传时间: 2016-10-25

    上传用户:youmo81

  • 利用linux环境下蒙特卡罗计算工具geant4实现伽玛射线与探测器乘积能量的模拟过程

    利用linux环境下蒙特卡罗计算工具geant4实现伽玛射线与探测器乘积能量的模拟过程

    标签: geant4 linux 环境 伽玛

    上传时间: 2014-01-02

    上传用户:hullow

  • 清华大学蒙特卡罗方法模拟课件

    清华大学蒙特卡罗方法模拟课件,清晰易懂,适合初学者

    标签: 清华大学 模拟 蒙特卡罗

    上传时间: 2013-12-26

    上传用户:变形金刚

  • 蒙特卡罗(Monte Carlo)方法

    蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机 数”的计算方法,解决很多计算问题。

    标签: Monte Carlo 蒙特卡罗

    上传时间: 2015-01-07

    上传用户:风之骄子

  • 模拟退火算法来源于固体退火原理

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

    标签: 模拟退火算法

    上传时间: 2015-04-24

    上传用户:R50974

  • 模拟退火算法来源于固体退火原理

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

    标签: 模拟退火算法

    上传时间: 2015-04-24

    上传用户:ryb

  • 模拟退火算法来源于固体退火原理

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

    标签: 模拟退火算法

    上传时间: 2014-12-19

    上传用户:TRIFCT

  • 这是一个好的建模学习资料,赶快下载吧, 数学建模十大算法 ( 包含:蒙特卡罗算法、数据拟合、参数估计、 插值等数据处理算法、线性规划、整数规划、多元规划、二次规划等规划类问题、 图论算法、动态

    这是一个好的建模学习资料,赶快下载吧, 数学建模十大算法 ( 包含:蒙特卡罗算法、数据拟合、参数估计、 插值等数据处理算法、线性规划、整数规划、多元规划、二次规划等规划类问题、 图论算法、动态规划、回溯搜索、分治算法、分支定界等计算机算法、 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法、 网格算法和穷举法、一些连续离散化方法、数值分析算法、图象处理算法)

    标签: 算法 建模 参数估计

    上传时间: 2014-07-26

    上传用户:xauthu

  • 蒙特卡罗方法得课件

    蒙特卡罗方法得课件,很详细! 蒙特卡罗随机模拟方法很不错得,大家快下。

    标签: 蒙特卡罗

    上传时间: 2013-12-09

    上传用户:wl9454