该文结合"10M/100M以太网交换芯片的设计"课题,介绍了以太网技术发展的概况和IP CORE、SoC的设计方法,阐述了以太网交换原理及关键技术,研究了CSMA/CD协议、交换机、VLAN的原理和数据流优先技术及流量控制,在此基础上完成了10M/100M以太网交换芯片的主要模块的设计方案和实现框图.同时结合Philip公司的IC总线的工作原理,给出了10M/100M以太网交换芯片的设计方案中的IC接口模块的FPGA设计的验证和仿真,并对仿真结果进行分析比较,验证了IC接口模块可以作为一个软核来使用.
上传时间: 2013-07-18
上传用户:jichenxi0730
USB3.0–SATA桥接芯片MB86C30A的主要规范:*CBC (密码段链接):一种适合加密模块数据的AES 模式。*XTS (带调整和密文窃取的XEX 加密模式):IEE
上传时间: 2013-06-10
上传用户:asdfasdfd
本文从总体方案、硬件电路、软件程序、性能测试等几个方面详细地阐述了基于FPGA与USB2.0的数据采集系统。采集系统选用高采样率低噪声的12位AD转换芯片进行AD转换电路设计;借助频率高、内部时延小的FPGA芯片实现USB固件并以此控制USB接口芯片,通过乒乓的方式对采样数据进行缓存,提高了系统数据吞吐能力;运用USB2.0标准的接口芯片为整个采集系统提供USB的通信能力。采用集成度较高的FPGA芯片作为系统控制核心,降低了设计难度,提高了系统稳定性,同时还减小了设备体积。
上传时间: 2013-04-24
上传用户:xuanjie
随着电信数据传输对速率和带宽的要求变得越来越迫切,原有建成的网络是基于话音传输业务的网络,已不能适应当前的需求.而建设新的宽带网络需要相当大的投资且建设工期长,无法满足特定客户对高速数据传输的近期需求.反向复用技术是把一个单一的高速数据流在发送端拆散并放在两个或者多个低速数据链路上进行传输,在接收端再还原为高速数据流.该文提出一种基于FPGA的多路E1反向复用传输芯片的设计方案,使用四个E1构成高速数据的透明传输通道,支持E1线路间最大相对延迟64ms,通过链路容量调整机制,可以动态添加或删除某条E1链路,实现灵活、高效的利用现有网络实现视频、数据等高速数据的传输,能够节省带宽资源,降低成本,满足客户的需求.系统分为发送和接收两部分.发送电路实现四路E1的成帧操作,数据拆分采用线路循环与帧间插相结合的方法,A路插满一帧(30时隙)后,转入B路E1间插数据,依此类推,循环间插所有的数据.接收电路进行HDB3解码,帧同步定位(子帧同步和复帧同步),线路延迟判断,FIFO和SDRAM实现多路数据的对齐,最后按照约定的高速数据流的帧格式输出数据.整个数字电路采用Verilog硬件描述语言设计,通过前仿真和后仿真的验证.以30万门的FPGA器件作为硬件实现,经过综合和布线,特别是写约束和增量布线手动调整电路的布局,降低关键路径延时,最终满足设计要求.
上传时间: 2013-07-16
上传用户:asdkin
随着信息社会的发展,人们要处理的各种信息总量变得越来越大,尤其在处理大数据量与实时处理数据方面,对处理设备的要求是非常高的。为满足这些要求,实时快速的各种CPU、处理板应运而生。这类CPU与板卡处理数据速度快,效率高,并且不断的完善与发展。此类板卡要求与外部设备通讯,同时也要进行内部的数据交换,于是板卡的接口设备调试与内部数据交换也成为必须要完成的工作。本文所作的工作正是基于一种高速通用信号处理板的外部接口和内部数据通道的设计。 本文首先介绍了通用信号处理板的应用开发背景,包括此类板卡使用的处理芯片、板上设备、发展概况以及和外部相连的各种总线概况,同时说明了本人所作的主要工作。 其次,介绍了PCI接口的有关规范,给出了通用信号处理板与CPCI的J1口的设计时序;介绍了DDR存储器的概况、电平标准以及功能寄存器,并给出了与DDR.存储器接口的设计时序;介绍了片上主要数据处理器件TS-202的有关概况,设计了板卡与DSP的接口时序。 再次,介绍了Altera公司FPGA的程序设计流程,并使用VHDL语言编程完成各个模块之间的数据传递,并重点介绍了DDR控制核的编写。 再次,介绍了WDM驱动程序的结构,程序设计方法等。 最后,通过从工控机向通用信号处理板写连续递增的数据验证了整个系统已经正常工作。实现了信号处理板内部数据通道设计以及与外部接口的通讯;并且还提到了对此设计以后地完善与发展。 本文所作的工作如下: 1、设计完成了处理板各接口时序,使处理板可以从接口接受/发送数据。 2、完成了FPGA内部的数据通道的设计,使数据可以从CPCI准确的传送到DSP进行处理,并编写了DSP的测试程序。 3、完成了DDR SDRAM控制核的VHDL程序编写。 4、完成了PCI驱动程序的编写。
上传时间: 2013-06-30
上传用户:唐僧他不信佛
加密算法一直在信息安全领域起着无可替代的作用,它直接影响着国家的未来和发展.随着密码分析水平、芯片处理能力和计算技术的不断进步,原有的数据加密标准(DES)算法及其变形的安全强度已经难以适应新的安全需要,其实现速度、代码大小和跨平台性均难以继续满足新的应用需求.在未来的20年内,高级加密标准(AES)将替代DES成为新的数据加密标准.高级加密标准算法是采用对称密钥密码实现的分组密码,支持128比特分组长度及128比特、192比特与256比特可变密钥长度.无论在反馈模式还是在非反馈模式中使用AES算法,其软件和硬件对计算环境的适应性强,性能稳定,密钥建立时间优良,密钥灵活性强.存储需求量低,即使在空间有限的环境使用也具备良好的性能.在分析高级加密标准算法原理的基础上,描述了圈变换及密钥扩展的详细编制原理,用硬件描述语言(VHDL)描述了该算法的整体结构和算法流程.详细论述了分组密码的两种运算模式(反馈模式和非反馈模式)下算法多种体系结构的实现原理,重点论述了基本体系结构、循环展开结构、内部流水线结构、外部流水线结构、混合流水线结构及资源共享结构等.最后在XILINX公司XC2S300E芯片的基础上,采用自顶向下设计思想,论述了高级加密标准算法的FPGA设计方法,提出了具体模块划分方法并对各个模块的实现进行了详细论述.圈变换采用内部流水线结构,多个圈变换采用资源共享结构,密钥调度与加密运算并行执行.占用芯片面积及引脚资源较少,在芯片选型方面具有很好的适应性.
上传时间: 2013-06-20
上传用户:fairy0212
本文研究基于ARM与FPGA的高速数据采集系统技术。论文完成了ARM+FPGA结构的共享存储器结构设计,实现了ARMLinux系统的软件设计,包括触摸屏控制、LCD显示、正弦插值算法设计以及各种显示算法设计等。同时进行了信号的高速采集和处理的实际测试,对实验测试数据进行了分析。 论文分别从软件和硬件两方面入手,阐述了基于ARM处理器和FPGA芯片的高速数据采集的硬件系统设计方法,以及基于ARMLinux操作系统的设备驱动程序设计和应用程序设计。 硬件方面,在FPGA平台上,我们首先利用乒乓操作的方式将一路高速数据信号转换成频率为原来频率1/4的4路低速数据信号,再将这四路数据分别存储到4个FIFO中,然后再对这4个FIFO中的数据拼接并存储在FPGA片上的双端口双时钟RAM中,最后将FPGA的双端口双时钟RAM挂载到ARM系统的总线上,实现了ARM和FPGA共享存储器的系统结构,使ARM处理器可以直接读取这个双端口双时钟的RAM中的数据,从而大大提高了数据采集与处理的效率。在采样频率控制电路设计方面,我们通过使FIFO的数据存储时钟降低为标准状态下的1/n实现数据采集频率降为标准状态的1/n,从而实现了由FPGA控制的可变频率的数据采集系统。 软件方面,为了更有效地管理和拓展系统功能,我们移植了ARMLinux操作系统,并在S3C2410平台上设计实现了基于Linux操作系统的触摸屏驱动程序设计、LCD驱动程序移植、自定义的FPGA模块驱动程序设计、LCD显示程序设计、多线程的应用程序设计。应用程序能够控制FPGA数据采集系统工作。 在前端采样频率为125MHz情况下,系统可以正常工作。能够实现对频率在5MHz以下的信号波形的直接显示;对5MHz至40MHz的信号,使用正弦插值算法进行处理,显示效果良好。同时这种硬件结构可扩展性强,可以在此基础上实现8路甚至16路缓冲的系统结构,可以使系统支持更高的采样频率。
上传时间: 2013-07-04
上传用户:林鱼2016
FFT/IFFT是时域信号与频域信号之间转换的基本运算,是数字信号处理的核心工具之一,因此,它广泛地应用于许多领域。在数字化的今天,不论是在通信领域还是在图像处理领域,对数字信号处理的速度、精度和实时性要求不断提高。为满足不断提高的要求,国内外不断地推出各种FFT/IFFT处理器,主要处理器有ASIC、DSP芯片、FPGA等。由于FPGA具有可反复编程的特点及丰富资源,所以它受到广泛的关注。 本论文就是一种基于FPGA实现浮点型数据的FFT及IFFT处理器,该处理器使用A1tera公司的Stratix Ⅱ系列的FPGA芯片。它主要采用流水线结构,这种结构可以使各级运算并行处理,对输入进来的数据进行连续处理,提高了运算速度,满足了系统的实时性要求;另外处理器所处理的数据是32位浮点型的,因此它同时提高了运算的精度。
上传时间: 2013-07-12
上传用户:cuicuicui
随着嵌入式技术和网络技术的发展和应用,充分结合两种技术优势的远程数据采集终端正在不断地被研究和开发。本文即是此背景下,综合以往远程数据采集终端的优缺点,对基于ARM的远程数据采集智能终端予以研究和实现,该终端具备GPRS和INTERNET两种接入方式。可通过RS232或A/D模块采集用户终端设备数据信息;在GPRS接入方式下使用GPRS无线数据终端通过GPRS网络接入互联网,在INTERNET接入方式下则直接接入互联网;接入后则可向远程控制中心上传用户终端据信息。本文研制的远程数据采集终端可广泛地应用包括环保数据采集在内的多种数据远程采集场合。 本文主要做了以下研究工作: 1、对硬件资源进行了外围扩展,对S3C44BOX处理器芯片的外围硬件进行了扩展设计,使之具备了满足使用需求的最小系统硬件资源。包括外围存储、LCD、键盘、以太网卡和GPRSi匿信模块等。 2、运用多任务操作系统可以有效的组织并行任务的处理,本文对μc/os-Ⅱ操作系统进行了移植,对原有μc/os-Ⅱ操作系统的抢占式调度机制进行了改造,使之成为整体抢占,局部轮询的调度机制;使之较好地满足了实际要求。 3、无论采用GPRS方式还是INTERNET方式,设备终端与INTERNET实现通信都必须具备相应的协议。本文实现了TCP/IP有关网络协议栈的建立,对协议进行了简化设计,实现了两种方式的接入,满足了嵌入式终端的要求。 4、为了使终端具备较好的人机交互能力,构建了嵌入式图形界面,实现了LCD图形显示和键盘输入控制的交互功能。 通过以上工作,建立了一个功能齐全,实时可靠,基于嵌入式系统的远程数据采集终端。
上传时间: 2013-07-17
上传用户:ljmwh2000
随着信息产业的不断发展,人们对数据传输速率要求越来越高,从而对数据发送端和接收端的性能都提出了更高的要求。接收机的一个重要任务就是在于克服各种非理想因素的干扰下,从接收到的被噪声污染的数据信号中提取同步信息,并进而将数据正确的恢复出来。而数据恢复电路是光纤通信和其他许多类似数字通信领域中不可或缺的关键电路,其性能决定了接收端的总体性能。 目前,数据恢复电路的结构主要有“时钟提取”和“过采样”两种结构。基于“过采样”的数据恢复方法的关键是过采样,即通过引入参考时钟,并增加时钟源个数的方式来代替第一种方法中的“时钟提取”。与“时钟提取”的数据恢复方法相比,基于“过采样”的数据恢复方法在性能上还有较大的差距,但是后者拥有高带宽、立即锁存能力、较低的等待时间和更高的抖动容限,更易于通过数字的方法实现,实现更简单,成本更低,并且这是一种数字化的模拟技术。如果能通过“过采样”方法在普通的逻辑电路上实现622.08Mb/s甚至更高速率的数据恢复,并将它作为一个IP模块来代替专用的时钟恢复芯片,这无疑将是性能和成本的较好结合。 本文主要研究“过采样”数据恢复电路的基本原理,通过全数字的设计方法,给出了在低成本可编程器件FPGA上实现数据恢复电路两种不同的过采样的实现方案,即基于时钟延迟的过采样和基于数据延迟的过采样。基于时钟延迟的过采样数据恢复电路方案,通过测试验证,其最高恢复的数据传输率可达到640Mb/s。测试结果表明,采用该方案实现的时钟恢复电路可工作在光纤通信系统STM-4速率级,即622.08MHz频率上,各方面指标基本符合要求。
上传时间: 2013-04-24
上传用户:axxsa