虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

自动<b>控制</b>

  • 5800C Fm芯片资料和驱动代码 技术特点: *国内首颗采用CMOS工艺的调频收音机芯片; *驱动能力强

    5800C Fm芯片资料和驱动代码 技术特点: *国内首颗采用CMOS工艺的调频收音机芯片; *驱动能力强,可直接驱动耳机及放大器; *功耗低,比国外先进方案还低1mA; *频率覆盖从76M-108M的各国调频波段; *高度集成度,所需外围器件数为零; *强大的LOW-IF数字音频结构; *强大的数字信号处理技术(DSP),实现自动频率控制和自动增益控制; *数字自适应噪声抑制 接受灵敏度高、音质出色、立体声效果优异; *支持重低音,可调式电台搜寻、柔软静音和混音等功能; *只需一个32.768K晶振作为参考时钟; *支持I2C和SPI数字接口,支持I2S音频接口,可以配合所有多媒体处理芯片; *可调去加重(50/75 us) ; *模拟和数字音量控制; *线性模拟输出电压; *两线和三线控制接口模式; *封装面积: 4×4mm,24-pin QFN

    标签: 5800C CMOS 驱动 芯片资料

    上传时间: 2017-06-21

    上传用户:1101055045

  • H9200是一款商品防盗EAS主板,用于商场、服装

    H9200是一款商品防盗EAS主板,用于商场、服装,超市等场所的防盗产品,本产品采进了先进的数字检波技术,自动增益控制技术(AGC技术),锁相环(PLL)等技术,与以同类产EAS产品相比,有性价比高,误报率低,检测率高,反应速度快,结构更加合理,性能更加稳定等优点!

    标签: H9200 EAS 主板

    上传时间: 2017-06-29

    上传用户:helmos

  • 【问题描述】 在一个N*N的点阵中

    【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。

    标签: 点阵

    上传时间: 2014-06-21

    上传用户:llandlu

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • 222-1短波接收机使用说明书

    本设备电气性能优良,结构坚固,主要组成部分为收信机和整流器。能装车,且具有人力或兽力搬运的可能。适合于师、团一级或船舶、邮电部门使用。收信的频率范围为1.5~30兆赫,分五个波段。可以接收电报和电话。供电为190,200,220,240伏交流电源。收信机采取一次变频超外差式电路。有二级高频放大器,三级中频放大器,中频频率为600千赫。中频通带有四种,其中3种借助于中频晶体滤波器得到的。机内尚有可控的抑制脉冲干扰的噪声抑制电路开关收信机的频率度盘是用照相法按机刻度的,因此频率刻度的准确度较高。机内有500千赫晶体校准器用以校准度盘刻度。由于在高波段采用了波段展阔电路,故调谐方便。调谐旋钮轴与主调可变电容器及频率度盘由无间隙齿轮传动因此具有良好的再定度与使用可靠性。收信机由传动机构的飞轮惯性作用达到快速调谐效果,而由主调电容器比调谐旋钮轴减速108倍的作用达到慢调的效果。二者是通过同一个旋钮完成的本收信机结构可靠,机箱底部装有减震器。(或装有避震器供装车使用)故能经受颠簸冲击振动长途运输的考验。由于中频回路是密封的,高频电感与波段开关板等经过良好的处理工艺,在电路上则采取温度补偿等措施,使收信设备能在低温、高温及潮湿的条件下使用。机箱及底座均用铝板制成,减轻了收信机的重量。收信机还具有音频,自动增益控制,半双工等输出线。输出端可接二副TA4低阻抗耳机。整流器内用硅二极管作整流,还具有稳流灯丝及稳压电路。本设备使用的电子器件如下:

    标签: 短波接收机

    上传时间: 2022-03-29

    上传用户:shjgzh

  • OV7670摄像头程序源码(免费提供)

    OV7670摄像头程序OV7670是一个种图象传感器,操作温度是-30℃-70℃,模拟电压是2.5-3.0V,感光阵列是640*480,功耗是工作时60mW/15fpsVGAYUV;休眠时小于20uA。OV7670,图像传感器,体积小,工作电压低,提供单片VGA摄像头和影像处理器的所有功能。通过SCCB总线控制,可以输入整帧、子采样、取窗口等方式的各种分辨率8位影像数据。该产品VGA图像最高达到30帧/秒。用户可以完全控制图像质量、数据格式和传输方式。所有图像处理功能过程包括伽玛曲线、白平衡、饱和度、色度等都可以通过SCCB接口编程。OmmiVision图像传感器应用独有的传感器技术,通过减少或消除光学或电子缺陷如固定图案噪声、托尾、浮散等,提高图像质量,得到清晰的稳定的彩色图像。1、高灵敏度适合低照度应用2、低电压适合嵌入式应用3、标准的SCCB接口,兼容IIC接口4、支持VGA,CIF,和从CIF到40*30的各种尺寸5、VarioPixel 子采样方式6、自动影响控制功能包括:自动曝光控制、自动增益控制、自动白平衡,自动消除灯光条纹、自动黑电平校准。图像质量控制包括色饱和度、色相、伽玛、锐度和ANTI_BLOOM7、ISP具有消除噪音和坏点补偿功能8、支持闪光灯、LED灯和氙灯9、支持图像缩放10、镜头失光补偿11、50/60Hz自动检测12、饱和度自动调节(UV调整)13、边缘增强自动调节14、降噪自动调节

    标签: ov7670 摄像头

    上传时间: 2022-04-19

    上传用户:fliang

  • SI4463 无线收发器模块驱动程序

    SI4463收发器性能如下:频率范围= 119-1050 MHz接收灵敏度= -126 dBm调制(G)FSK,4(G)FSK,(G)MSK OOK最大输出功率+20 dBm(Si4464 / 63)低有功功耗10/13 mA RX18 mA TX + 10 dBm(Si4460)超低功耗模式30 nA关机,50 nA待机数据速率= 100 bps至1 Mbps快速的唤醒和跳跃时间电源= 1.8至3.6 V优异的选择性能60 dB相邻通道1 MHz时75 dB阻塞天线分集和T / R开关控制高可配置的数据包处理程序TX和RX 64字节FIFO自动频率控制(AFC)自动增益控制(AGC)低BOM低电量检测器温度感应器20引脚QFN封装IEEE 802.15.4g兼容

    标签: si4463 无线收发器

    上传时间: 2022-06-19

    上传用户:

  • 北斗二代导航系统接收机射频前端设计

    本文首先介绍了卫星导航接收机的发展现状与趋势。接着对比分析了现如今主流的接收机技术:超外差式、零中频式、低中频式及数字中频式结构,介绍了各结构的拓扑结构并对比了相互之间的优缺点,然后根据B1导航信号的特征参数要求,确定本文接收机所采用低中频结构的技术指标。结合选择的芯片参数搭建系统仿真模型,利用系统仿真软件ADS对接收机前端链路进行行为级仿真,验证设计方案的可行性,分模块设计了接收机前端系统的各功能电路,主要有多级低噪声放大器、选频滤波电路、本振电路、混频器电路以及系统自动增益控制电路。针对卫星导航信号接收机前端必须具备高灵敏度、强选择性以及一定动态范围的特点,需要平衡设计低噪声放大器噪声性能与单级增益,以及折中接收机前端镜像频率抑制性能与信道的选择性。利用仿真软件辅助设计了电路原理图与印刷电路板版图,对其PCB贴片后进行测试与调试。最后将调试好的模块级联成系统,测试射频前端系统的性能并加以册NWL.Clogin.com最终实现的接收机射频前端5V电压供电,接收信号中心频率1561.098MHz,链路最大增益为122dB,系统噪声小于2dB.中频信号中心频率46.1MHz,带宽为4.3MHz,纹波在1.5dB内,带外抑制与镜像抑制都大于30dB,端口驻波比小于2.0,测试结果基本满足设计指标要求。

    标签: 北斗二代导航系统 接收机 射频前端

    上传时间: 2022-06-20

    上传用户:

  • 基于IGBT的并联谐振感应加热电源的研究

    本文首先对感应加热电源的发展现状及前景作了分析,并阐述了感应加热的基本原理。从适用于大功率应用场合的电流型并联负载谐振逆变器出发,对比了并联谐振逆变器各种调功方式的优缺点,提出采用高频Buck斩波器做为调节电源输出功率的手段。文中重点对并联谐振逆变器进行分析,对比其各工作状态,指出为保证逆变器可靠运行采用固定重叠角的控制策略,逆变器谱振负载工作在容性准谐振状态;采用基于DSP的数字锁相、频率自动跟踪控制策略,逆变器开关频率快速跟随负载固有频率的变化,谐振负载工作在所期望的弱容性准谐振状态。文中提出了一种精确计算输出功率的方法,提高了电源的输出控制精确度。本文详细阐述了并联型感应加热电源的设计过程,分析了主电路的设计方法以及关键器件的选型,控制系统采用T1公司的TMS320LF2407A DSP作为控制核心,设计了一种可靠的运行保护机制,并对电源的散热系统进行了仿真设计。在上述分析的基础上,本文成功研制出了一台功率为60kw的高性能的并联型中频感应加热电源。试验结果表明,该电源的电气性能达到了预期的指标要求,有利于提高感应加热热场的稳定性,有利于提高感应加热的谐振频率。

    标签: igbt 感应加热电源

    上传时间: 2022-06-21

    上传用户: