实现聚类K均值算法: K均值算法:给定类的个数K
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid...
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid...
变色龙层次聚类算法,利用动态模型的层次聚类算法...
层次聚类算法中的cure算法,它利用代表点来达到聚类目的...
图像模式识别的聚类器设计,采用VC++实现,和分类器设计相对应。...
gmeans-- Clustering with first variation and splitting 文本聚类算法Gmeans ,使用了3种相似度函数,cosine,euclidean ,KL.文本数据使用的是稀疏矩阵形式....