基于RBF神经网络美元兑人民币汇率的预测兰州交通大学
标签: 神经网络
上传时间: 2015-04-15
上传用户:478249383
本程序根据训练好的网络文件ANN.mat预测新的数据文件,得到均方误差,并画出预测数据和原数据的对比图。此程序运用到了很多Matlab编程中常用到的表达方式,还有一些神经网络编程的基本概念的表达,如归一化的表达。
上传时间: 2017-01-03
上传用户:tju1895
BP神经网络matlab源程序代码 %% 该代码为 BP 神经网络的预测代码 % 清空环境变量 clc clear % %% 网络结构建立 % 读取数据 load data input output input=data(;,1;2;3;4;5); output=data(;,5); %节点个数 %训练数据和预测数据 %选连样本输入输出数据归一化 %构建网络 net=newff(inputn,outputn,hiddennum); %网络进化参数 %网络训练 % 预测数据归一化
上传时间: 2018-04-10
上传用户:45808330
网络技术题目押题,有利于提高同学们三级考试过关
上传时间: 2019-12-18
上传用户:HZYLYJ
用GA算法优化BP神经网络,预测回归问题 用GA算法优化BP神经网络,预测回归问题
标签: BP神经网络
上传时间: 2021-10-20
上传用户:recarry
统计学习基础:数据挖掘、推理与预测介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。【内容推荐】《统计学习基础:数据挖掘、推理与预测》试图将学习领域中许多重要的新思想汇集在一起,并且在统计学的框架下解释它们。随着计算机和信息时代的到来,统计问题的规模和复杂性都有了急剧增加。数据存储、组织和检索领域的挑战导致一个新领域“数据挖掘”的产生。数据挖掘是一个多学科交叉领域,涉及数据库技术、机器学习、统计学、神经网络、模式识别、知识库、信息提取、高性能计算等诸多领域,并在工业、商务、财经、通信、医疗卫生、生物工程、科学等众多行业得到了广泛的应用。【作者简介】Trevor Hastie,Robert Tibshirani和Jerome Friedman都是斯坦福大学统计学教授,并在这个领域做出了杰出的贡献。Hastie和Tibshirani提出了广义和加法模型,并出版专著“Generalized Additive Models”。Hastie的主要研究领域为:非参数回归和分类、统计计算以及生物信息学、医学和工业的特殊数据挖掘问题。他提出主曲线和主曲面的概念,并用S-PLUS编写了大量统计建模软件。Tibshirani的主要研究领域为:应用统计学、生物统计学和机器学习。他提出了套索的概念,还是“An Introduction to the Bootstrap”一书的作者之一。Friedman是CART、MARS和投影寻踪等数据挖掘工具的发明人之一。他不仅是位统计学家,而且是物理学家和计算机科学家,先后在物理学、计算机科学和统计学的一流杂志上表发论文80余篇。
标签: 统计
上传时间: 2022-05-04
上传用户:
经过数十年技术演进,目前发动机控制、底盘控制、车身电子控制 等传统汽车电子控制技术已极为成熟,车辆信息服务系统、定位导航系 统、电子娱乐系统等车载电子装置网络化、智能化发展不断深入,汽车电 子的内涵和外延得到了不断扩展丰富。预测显示到2020年每辆汽车上各类 电子装置将超过200个,在实现各类电子装置实时可靠传输数据、提供信 息化服务的同时,汽车电子网络安全防护的理念、方法、技术、政策、标 准等也必须跟上需求发展的步伐。如何建立更为安全可靠的汽车电子系统 架构,满足开放式网络互联环境下的安全需求,部署有效措施防范安全风 险,并形成切实可落地的标准,这一系列难点问题都值得我们加紧研究、 持续关注
上传时间: 2022-05-07
上传用户:
从感知机到深度神经网络带你入坑深度学习机器学习工程师Adi Chris最近学习完吴恩达在Coursera上的最新课程后,决定写篇博客来记录下自己对这一领域的理解。他建议通过这种方式可以有效地深入理解一个学习主题。除此之外,也希望这篇博客可以帮助到那些有意入坑的朋友。言归正传。在我正式介绍深度学习是什么东西之前,我想先引入一个简单的例子,借以帮助我们理解为什么需要深度神经网络。同时,本文附有使用深度神经网络模型求解异或(XOR)问题的代码,发布在GitHub上。异或问题何为异或问题?对于给定的两个上进制输入,我们通过异或逻辑门得到一个预测输出,这 过程 为异或问题。注意,输入不相等时输出为1,否则为0。1展示了异或函数的所有可能的输出结束:
标签: 深度神经网络
上传时间: 2022-06-19
上传用户:canderile
最新网络通信协议手册
标签: 网络通信协议
上传时间: 2013-06-12
上传用户:eeworm
数字通信网络
上传时间: 2013-08-01
上传用户:eeworm