虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

网络<b>模型</b>

  • 面向5G移动网络绿色通信关键技术研究

    本文跟踪了国内国际上各研究组织关于5G需求与关键技术最新研究进展。高能效将是5G从设计之初就不得不考虑的几个重要问题之。研究如何在不损失或者微损失网络性能的前提下,极大地降低系统的能量消耗是一项很有研究价值的工作。本文通过分析现有无线网络基站能量消耗的各个组成部分,参考目前5G研究趋势,选择网络能效模型与基站能耗模型,用于后续网络能效评估。小站密集化部署技术(Small Cell)是目前业内普遍认同的实现未来5G系统各项性能指标与效率指标的有效策略之一。随着小站的密集化部署,网络整体能效成为衡量异构无线通信系统长期经济效益的一项重要指标。网络运营前,需要以高能效为目标进行Small Cell密集化网络部署。本文利用上述的能效模型,建立并推导出了Small Cell最佳部客位置与数量的高能效网络部署方案目标函数,进一步通过数值仿真方法获得了具体网络场景下的高能效Small Cell 络部署位置与数量,最后通过对大量的仿真结果进行分析,得出了高能效Small Cell集化署方案的一般性规律。研究成果对未来5G系统中SmallCell的部署具有重要参考意义在网络运营中,由于网络负载存在天然的不均衡性与动态被动性,需要在Small Cell密集化部署的未来移动通信系统中进行高能效网络拓扑控制,以便在网络运营中维持实时的网络能效最优化的网络拓扑结构。本论文分析了目前业界关于Small Cell 休眠/唤醒性能增益的最新研究成果,并针对其现有休眠唤醒方案中以单小区固定负载为门限的休眠顺醒机制的不足,提出了一种高能效Small Cell联合休眼唤醒控制机制,实现了对网络拓扑的高能效动态控制。Small Cell密集化部署使网络编码在未来无线网络环境中得到了新的应用契机,本文最后结合几种未来5G新场景对网络编码应用方案进行了初步探讨。初步仿真结果表明,网络编码方案可有效提升能效。

    标签: 5g 移动网络

    上传时间: 2022-06-20

    上传用户:canderile

  • 神经网络原理 作者SimonHaykin 译者叶世伟等

    本书包含四个组成部分:导论,监督学习,无监督学习,神经网络动力学模型。导论部 分介绍神经元模型、神经网络结构和机器学习的基本概念和理论。监督学习讨论感知机学习 规则,有监督的Hebb学习,Widrow-Hoff学习算法,反向传播算法及其变形,RBF网络,正则 化网络,支持向量机以及委员会机器。无监督学习包括主分量分析,自组织特征映射模型的 竞争学习形式,无监督学习的信息理论,植根于统计力学的随机学习机器,最后是与动态规 划相关的增强式学习。

    标签: 神经网络

    上传时间: 2022-06-21

    上传用户:fliang

  • PSCAD / EMTDC的小电流单相接地故障模型仿真

    建立了小电流接地系统的仿真模型,利用电磁暂态程序PSCAD/EMTDC全面仿真了不同故障情况对故障稳态和暂态电压、电流幅值特征和相位特征产生的影响,(这句话太拗口)并得到了相应的零序电压及零序电流的幅值、相位及波形。通过对仿真数据及波形的进一步分析,得出了小电流接地系统发生单相接地故障时的运行特点,验证了小电流接地故障稳态和暂态分析理论的科学性、合理性。为了提取配电网单相接地故障选线和故障测距的暂态故障特征量,基于PSCAD/EMTDC的仿真环境,搭建了小电流接地系统的配电网络仿真模型并综合考虑不同短路时刻、不同接地电弧电阻、不同故障距离和线路长度等多个因素,对配电网小电流接地系统的单相接地故障进行了大量仿真。在配电网单相接地短路故障后的第1个工频周波(0~0.02s)内故障线路的零序电流包络线的变化速度比非故障线路变化缓慢,包络面积大,但与非故障线路首半波极性相反。仿真分析表明此暂态特性不受短路时刻、电弧电阻、故障距离和消弧线圈被偿度的影响,为单相接地故障选线和故障测距的研究提供了理论依据。

    标签: pscad emtdc 小电流接地系统

    上传时间: 2022-07-22

    上传用户:xsr1983

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625

  • 微电脑型数学演算式双输出隔离传送器

    特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)

    标签: 微电脑 数学演算 输出 隔离传送器

    上传时间: 2013-11-24

    上传用户:541657925

  • 80C51特殊功能寄存器地址表

    /*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0;             //累加器 sfr B = 0xF0;  //B 寄存器 sfr PSW    = 0xD0;           //程序状态字寄存器 sbit CY    = PSW^7;       //进位标志位 sbit AC    = PSW^6;        //辅助进位标志位 sbit F0    = PSW^5;        //用户标志位0 sbit RS1   = PSW^4;        //工作寄存器组选择控制位 sbit RS0   = PSW^3;        //工作寄存器组选择控制位 sbit OV    = PSW^2;        //溢出标志位 sbit F1    = PSW^1;        //用户标志位1 sbit P     = PSW^0;        //奇偶标志位 sfr SP    = 0x81;            //堆栈指针寄存器 sfr DPL  = 0x82;            //数据指针0低字节 sfr DPH  = 0x83;            //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON  = 0x87;           //电源控制寄存器 sfr AUXR = 0x8E;              //辅助寄存器 sfr AUXR1 = 0xA2;             //辅助寄存器1 sfr WAKE_CLKO = 0x8F;        //时钟输出和唤醒控制寄存器 sfr CLK_DIV  = 0x97;          //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1;        //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE     = 0xA8;           //中断允许寄存器 sbit EA    = IE^7;  //总中断允许位  sbit ELVD  = IE^6;           //低电压检测中断控制位 8051

    标签: 80C51 特殊功能寄存器 地址

    上传时间: 2013-10-30

    上传用户:yxgi5

  • TLC2543 中文资料

    TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明    TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double  sum_final1; double  sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe};  void delay(unsigned char b)   //50us {           unsigned char a;           for(;b>0;b--)                     for(a=22;a>0;a--); }  void display(uchar a,uchar b,uchar c,uchar d) {    P0=duan[a]|0x80;    P2=wei[0];    delay(5);    P2=0xff;    P0=duan[b];    P2=wei[1];    delay(5);   P2=0xff;   P0=duan[c];   P2=wei[2];   delay(5);   P2=0xff;   P0=duan[d];   P2=wei[3];   delay(5);   P2=0xff;   } uint read(uchar port) {   uchar  i,al=0,ah=0;   unsigned long ad;   clock=0;   _cs=0;   port<<=4;   for(i=0;i<4;i++)  {    d_in=port&0x80;    clock=1;    clock=0;    port<<=1;  }   d_in=0;   for(i=0;i<8;i++)  {    clock=1;    clock=0;  }   _cs=1;   delay(5);   _cs=0;   for(i=0;i<4;i++)  {    clock=1;    ah<<=1;    if(d_out)ah|=0x01;    clock=0; }   for(i=0;i<8;i++)  {    clock=1;    al<<=1;    if(d_out) al|=0x01;    clock=0;  }   _cs=1;   ad=(uint)ah;   ad<<=8;   ad|=al;   return(ad); }  void main()  {   uchar j;   sum=0;sum1=0;   sum_final=0;   sum_final1=0;    while(1)  {              for(j=0;j<128;j++)          {             sum1+=read(1);             display(a1,b1,c1,d1);           }            sum=sum1/128;            sum1=0;            sum_final1=(sum/4095)*5;            sum_final=sum_final1*1000;            a1=(int)sum_final/1000;            b1=(int)sum_final%1000/100;            c1=(int)sum_final%1000%100/10;            d1=(int)sum_final%10;            display(a1,b1,c1,d1);           }         } 

    标签: 2543 TLC

    上传时间: 2013-11-19

    上传用户:shen1230

  • AVR单片机数码管秒表显示

    #include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,

    标签: AVR 单片机 数码管

    上传时间: 2013-10-21

    上传用户:13788529953

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-11-06

    上传用户:smallfish

  • 802.11网卡Windows驱动的设计与实现

    介绍了802.11系列协议的发展及异同,分析了Windows系统中的网络驱动模型,根据NDIS驱动模型设计并实现了802.11网卡Windows驱动程序,重点介绍了驱动中的数据收发队列的设计管理和协议状态的转化,并通过测试表明可以实现802.11协议的功能。

    标签: Windows 802.11 网卡 驱动

    上传时间: 2013-11-22

    上传用户:Wwill