差分跳频(DFH)是集跳频图案、信息调制与解调于一体,是一个全面基于数字信号处理的全新概念的通信系统,其技术体制和原理与常规跳频完全不同,较好地解决了数据速率和跟踪干扰等问题,代表了当前短波通信的一个重要发展方向。美国Sanders公司推出了名为CHESS的新型短波跳频通信系统,并获得了成功,但我国对该体制和技术的研究还处于初始阶段,目前还不太成熟,离实际应用还有一段距离。 本文主要基于FPGA芯片的基础上对差分跳频进行了研究,用FPGA来实现数字信号处理可以很好地解决并行性和速度问题,而且其灵活的可配置特性,使得FPGA构成的DSP系统非常易于修改、测试及硬件升级。而且设计中尽量采用软件无线电体系结构,减少模拟环节,把数字化处理尽量靠近天线,从而建立一个通用、标准、模块化的硬件平台,用软件编程来实现差分跳频的各种功能,从基于硬件的设计方法中解放出来。 本文首先介绍了课题背景及研究的意义,阐述了目前差分跳频中频率合成跟频率识别的实现方案。在频率合成中,着重对DDS的相位截断误差及幅度量化误差进行仿真,找出基于FPGA实现的最佳参数及改善方法。在频率识别中,基于Xilinx公司提供FFT IP核,接收端中的位同步,频率识别均在FFT的理论上进行设计。最后根据设计方案制作基于FPGA的电路板。 设计中跳频图案、直接数字频率合成器、频率识别、位同步、跳频图案恢复、线性调频z变换等模块均采用Verilog和VHDL两种通用硬件描述语言进行设计,以便能够在所有厂家的FPGA芯片中移植。
上传时间: 2013-07-22
上传用户:yezhihao
在图像的实时处理中,消除图像旋转是一项实用的图像处理技术,无论在军事还是民用设施中都得以广泛的应用。目前,消除图像旋转的技术有机械式、光学式、电子式。其中电子消旋发展最快,也是图像消旋技术未来发展的趋势。 本次课题是应海军某部的要求,为海军测量船的图像观测系统消除图像旋转。本文详细研究了视频信号的特点,提出了利用FPGA和DSPs为主架构的视频图像处理平台,以EP20K600EBC652—2X为核心处理器的实时图像消旋系统。该平台利用旋转算法将原图像反向旋转相应的角度,再用双线性插值方法进行重采样,从而得到消旋后的图像。因为这次图像旋转角度是通过机械设备测得的,所以是一种机械加电子的图像消旋系统。 本文论述了图像消旋算法及其优化,详细说明整个系统的设计思路,及其软硬件实现,包括PCB设计,DSPs的软硬件开发以及FPGA的相关设计。目前,系统已正常工作,实现了图像的实时消旋的目标。
上传时间: 2013-08-05
上传用户:DanXu
雷达信号模拟技术和现代雷达技术的发展息息相关。雷达信号模拟设备可以仿真出各种符合实验要求的目标信号来,直接注入雷达来对雷达进行试验,极大的方便了雷达的设计与调试。 本课题主要研究利用FPGA实现线性调频脉冲压缩雷达目标信号的模拟。全文的内容如下: 首先详细阐述了线性调频(LFM)脉冲压缩雷达脉冲压缩原理,分析了线性调频脉冲信号的特点,讨论和比较了匹配滤波数字实现的两种算法:时域实现和频域实现。 其次在对常用雷达信号模拟方法探讨的基础上,提出基于FPGA的线性调频脉冲压缩雷达目标视频信号模拟器的系统设计,对点目标、多目标和延展目标等情况下的目标信号进行建模,针对设定目标参数完成了目标信号的波形仿真,并完成基于频域实现方法的线性调频脉冲压缩雷达数字匹配滤波算法的设计及仿真。 最后,在Quartus Ⅱ 6.0平台上,完成模拟器中脉冲压缩等信号处理部分基于Verilog HDL 语言的软件设计及功能、时序仿真,并完成了相关硬件的设计。
上传时间: 2013-07-13
上传用户:squershop
QPSK是一种线性窄带数字调制技术,具有频谱利用率高、频谱特性好、抗衰落性能强和可用非相干解调等特点。扩频通信是从军事通信中发展起来的一种高性能通信技术,具有抗干扰、抗多径能力强和保密性好等优点,在移动通信和卫星通信中得到广泛应用。所以将QPSK技术应用亍扩频通信具有重要的工程意义。 本文对QPSK调制的扩频系统的FPGA实现进行了研究。本文介绍了扩频通信的原理及发展现状,并对QPSK调制的原理进行了详细阐述。本文设计的扩频通信系统主要包括串并/并串转换、差分编/解码、DDS、扩频/解扩、QPSK调制/解调等模块,基于Altera公司的Quartus Ⅱ 4.1开发平台对以上各模块进行了设计和时序仿真.仿真结果证明:该系统能正确工作,完成了预定的目标。 本文设计的基于FPGA的扩频通信系统具有集成度高、可软件升级等优点,这为设计更高集成度和灵活性的通信系统提供了基础。
上传时间: 2013-06-19
上传用户:zzy7826
雷达信号处理是雷达系统的重要组成部分。在数字信号处理技术飞速发展的今天,雷达信号处理中也普遍使用数字信号处理技术。而现场可编程门阵列(FPGA)在数字信号处理中的广泛应用,使得FPGA在雷达信号处理中也占据了重要地位。 针对雷达信号处理的设计与实现,本文在以下两个方面展开研究: 一方面以线性调频信号(LFM)为例,分别对几种基本的雷达信号处理,如正交相干检波、脉冲压缩、动目标显示(MTI)/动目标检测(MTD)和恒虚警(CFAR)详细地阐述了其原理,在此基础上给出了其经常采用的实现方法,并在MATLAB环境中对各个环节进行了参数化仿真,详尽地给出了各环节的仿真波形图。针对仿真结果,直观形象地说明了不同实现方法的优劣。 另一方面结合MATLAB仿真结果,给出利用FPGA实现雷达信号处理的方案。在Xilinx ISE6.3i软件集成环境下,通过对Xilinx提供的IP核的调用,并与VHDL语言相结合,完成雷达信号处理的FPGA实现。
上传时间: 2013-04-24
上传用户:ylwleon
· 摘要: 为了实现视频图像的实时处理,采用基于DSP+FPGA的线性流水阵列结构,用现场可编程门阵列FPGA对采集的视频数字图像做预处理,并结合大规模可编程逻辑阵列CPLD进行逻辑控制,实现了视频图像的采集和目标提取的视频数字图像处理系统.介绍了该视频图像处理系统的硬件组成、工作原理和各种视频跟踪算法的应用.该系统与计算机联结,配以适当的图像处理软件和开发系统,即可形成一个通
上传时间: 2013-06-17
上传用户:dancnc
近年来,随着集成电路工艺技术的进步,电子系统的构成发生了两个重要的变化: 一个是数字信号处理和数字电路成为系统的核心,一个是整个电子系统可以集成在一个芯片上(称为片上系统)。这些变化改变了模拟电路在电子系统中的作用,并且影响着模拟集成电路的发展。 数字电路不仅具有远远超过模拟电路的集成规模,而且具有可编程、灵活、易于附加功能、设计周期短、对噪声和制造工艺误差的抗扰性强等优点,因而大多数复杂系统以数字信号处理和数字电路为核心已成为必然的趋势。虽然如此,模拟电路仍然是电子系统中非常重要的组成部分。这是因为我们接触到的外部世界的物理量主要都是模拟量,比如图像、声音、压力、温度、湿度、重量等,要将它们变换为数字信号,需要模拟信号处理和数据转换电路,如果这些电路性能不够高,将会影响整个系统的性能。其次,系统中的许多功能不可能或很难用数字电路完成,如微弱信号放大,很高频率和宽频带信号的实时处理等。因此,虽然模拟电路在系统中不再是核心,但作为固有的模拟世界与数字系统的接口,其地位和作用仍然十分重要。 片上系统要求将数字电路和模拟电路集成在一个芯片上,这希望模拟电路使用与数字电路相同的制造工艺。随着MOS器件的线宽不断减小,使MOS器件的性能不断提高,MOS数字电路成为数字集成电路的主流,并因此促进了MOS模拟集成电路的迅速发展。为了适应电子系统功能的不断扩展和性能的不断提高,对模拟电路在降低电源电压、提高工作频率、扩大线性工作范围和提高性能指标的精度和稳定度等方面提出更高要求,促进了新电路技术的发展。 作为研究生课程的教材,本书内容是在本科相关课程基础上的深化和扩展,同时涉及实际设计中需要考虑的一些问题,重点介绍具有高工作频率、低电源电压和高工作稳定性的新电路技术和在电子系统中占有重要地位的功能电路及其中的新技术。全书共7章,大致可分为三个部分。第一部分包括第1章和第7章。第1章为MOS模拟集成电路基础,比较全面地介绍MOS器件的工作原理和特性以及由MOS器件构成的基本单元电路,为学习本教材其他内容提供必要的知识。由于版图设计与工艺参数对模拟集成电路性能的影响很大,因此第7章简单介绍制造MOS模拟集成电路的CMOS工艺过程和版图设计技术,读者可以通过对该章所介绍的相关背景知识的了解,更深入地理解MOS器件和电路的特性,有助于更好地完成模拟集成电路的可实现性设计。第二部分为新电路技术,由第2章、第3章和第5章的部分组成,包括近年来逐步获得广泛应用的电流模电路、抽样数据电路和对数域电路,它们在提高工作频率、降低电源电压、扩大线性工作范围和提高性能指标的精度和稳定度方面具有明显的潜力,同时它们也引入了一些模拟电路的新概念。这些内容有助于读者开拓提高电路性能方面的思路。第2章介绍电流模电路的工作原理、特点和典型电路。与传统的以电压作为信号载体的电路不同,这是一种以电流作为信号载体的电路,虽然在电路中电压和电流总是共同存在并相互作用的,但由于信号载体不同,不仅电路性能不同而且电路结构也不同。第3章介绍抽样数据电路的特点和开关电容与开关电流电路的工作原理、分析方法与典型电路。抽样数据电路类似于数字电路,处理的是时间离散信号,又类似于模拟电路,处理的是幅度连续信号,它比模拟电路具有稳定准确的时间常数,解决了模拟电路实际应用中的一大障碍。对数域电路在第5章中结合其在滤波器中的应用介绍,这类电路除具有良好的电性能外,还提出了一种利用器件的非线性特性实现线性电路的新思路。第三部分介绍几个模拟电路的功能模块,它们是电子系统中的关键组成部分,并且与信号和信号处理联系密切,有助于在信号和电路间形成整体观念。这部分包括第4章至第6章。第4章介绍数据转换电路的技术指标和高精度与高速度转换电路的构成、工作原理、特点和典型电路。第5章介绍模拟集成滤波器的设计方法和主要类型,包括连续时间滤波器、对数域滤波器和抽样数据滤波器。第6章介绍通信系统中的收发器与射频前端电路,包括收信器、发信器的技术指标、结构和典型电路。因为载波通信系统传输的是模拟信号,射频前端电路的性能对整个通信系统有直接的影响,所以射频集成电路已成为重要的研究课题。 〖〗高等模拟集成电路〖〗〖〗前言〖〗〖〗本书是在为研究生开设的“高等模拟集成电路”课程讲义的基础上整理而成,由董在望主编,第1、4、7章由李冬梅编写,第6章由王志华编写,第5章由李永明和董在望编写,第2、3章由董在望编写,李国林参加了部分章节的校核工作。 本书可作为信息与通信工程和电子科学与技术学科相关课程的研究生教材或教学参考书,也可作为本科教学参考书或选修课教材和供相关专业的工程技术人员参考。 清华大学出版社多位编辑为本书的出版做了卓有成效的工作,深致谢意。 限于编者水平,难免有错误和疏漏之处,欢迎批评指正。 目录 1.1MOS器件基础及器件模型 1.1.1结构及工作原理 1.1.2衬底调制效应 1.1.3小信号模型 1.1.4亚阈区效应 1.1.5短沟效应 1.1.6SPICE模型 1.2基本放大电路 1.2.1共源(CS)放大电路 1.2.2共漏(CD)放大电路 1.2.3共栅(CG)放大电路 1.2.4共源共栅(CSCG)放大电路 1.2.5差分放大电路 1.3电流源电路 1.3.1二极管连接的MOS器件 1.3.2基本镜像电流源 1.3.3威尔逊电流源 1.3.4共源共栅电流源 1.3.5有源负载放大电路 1.4运算放大器 1.4.1运算放大器的主要参数 1.4.2单级运算放大器 1.4.3两级运算放大器 1.4.4共模反馈(CMFB) 1.4.5运算放大器的频率补偿 1.5模拟开关 1.5.1导通电阻 1.5.2电荷注入与时钟馈通 1.6带隙基准电压源 1.6.1工作原理 1.6.2与CMOS工艺兼容的带隙基准电压源 思考题 2电流模电路 2.1概述 2.1.1电流模电路的概念 2.1.2电流模电路的特点 2.2基本电流模电路 2.2.1电流镜电路 2.2.2电流放大器 2.2.3电流模积分器 2.3电流模功能电路 2.3.1跨导线性电路 2.3.2电流传输器 2.4从电压模电路变换到电流模电路 2.5电流模电路中的非理想效应 2.5.1MOSFET之间的失配 2.5.2寄生电容对频率特性的影响 思考题 3抽样数据电路 3.1开关电容电路和开关电流电路的基本分析方法 3.1.1开关电容电路的时域分析 3.1.2开关电流电路的时域分析 3.1.3抽样数据电路的频域分析 3.2开关电容电路 3.2.1开关电容单元电路 3.2.2开关电容电路的特点 3.2.3非理想因素的影响 3.3开关电流电路 3.3.1开关电流单元电路 3.3.2开关电流电路的特点 3.3.3非理想因素的影响 思考题 4A/D转换器与D/A转换器 4.1概述 4.1.1电子系统中的A/D与D/A转换 4.1.2A/D与D/A转换器的基本原理 4.1.3A/D与D/A转换器的性能指标 4.1.4A/D与D/A转换器的分类 4.1.5A/D与D/A转换器中常用的数码类型 4.2高速A/D转换器 4.2.1全并行结构A/D转换器 4.2.2两步结构A/D转换器 4.2.3插值与折叠结构A/D转换器 4.2.4流水线结构A/D转换器 4.2.5交织结构A/D转换器 4.3高精度A/D转换器 4.3.1逐次逼近型A/D转换器 4.3.2双斜率积分型A/D转换器 4.3.3过采样ΣΔA/D转换器 4.4D/A转换器 4.4.1电阻型D/A转换器 4.4.2电流型D/A转换器 4.4.3电容型D/A转换器 思考题 5集成滤波器 5.1引言 5.1.1滤波器的数学描述 5.1.2滤波器的频率特性 5.1.3滤波器设计的逼近方法 5.2连续时间滤波器 5.2.1连续时间滤波器的设计方法 5.2.2跨导电容(GmC)连续时间滤波器 5.2.3连续时间滤波器的片上自动调节电路 5.3对数域滤波器 5.3.1对数域电路概念及其特点 5.3.2对数域电路基本单元 5.3.3对数域滤波器 5.4抽样数据滤波器 5.4.1设计方法 5.4.2SZ域映射 5.4.3开关电容电路转换为开关电流电路的方法 思考题 6收发器与射频前端电路 6.1通信系统中的射频收发器 6.2集成收信器 6.2.1外差式接收与镜像信号 6.2.2复数信号处理 6.2.3收信器前端结构 6.3集成发信器 6.3.1上变换器 6.3.2发信器结构 6.4收发器的技术指标 6.4.1噪声性能 6.4.2灵敏度 6.4.3失真特性与线性度 6.4.4动态范围 6.5射频电路设计 6.5.1晶体管模型与参数 6.5.2噪声 6.5.3集成无源器件 6.5.4低噪声放大器 6.5.5混频器 6.5.6频率综合器 6.5.7功率放大器 思考题 7CMOS集成电路制造工艺及版图设计 7.1集成电路制造工艺简介 7.1.1单晶生长与衬底制备 7.1.2光刻 7.1.3氧化 7.1.4扩散及离子注入 7.1.5化学气相淀积(CVD) 7.1.6接触与互连 7.2CMOS工艺流程与集成电路中的元件 7.2.1硅栅CMOS工艺流程 7.2.2CMOS集成电路中的无源元件 7.2.3CMOS集成电路中的寄生效应 7.3版图设计 7.3.1硅栅CMOS集成电路的版图构成 7.3.2版图设计规则 7.3.3CMOS版图设计技术 思考题
标签: 模拟集成电路
上传时间: 2013-11-13
上传用户:chengxin
在本课题中,兼顾了效率及线性度,采用自适应预失真前馈复合线性化系统来改善高功率放大器的线性度。由于加入自适应控制模块,射频电路不受温度、时漂、输入功率等的影响,可始终处于较佳工作状态,这使得整个放大系统更为实用,也更具有拓展价值。
上传时间: 2013-11-21
上传用户:xauthu
摘要:对LDO线性稳压器关键技术进行了分析,重点分析了LDO稳压器的稳定性问题,在此基础上提出了一种新型的动态频率补偿电路,利用MOS管的开关电阻、寄生电容等构成的电阻电容网络,通过采样负载电流而改变MOS开关管的工作点或工作状态,即改变开关电阻、寄生电容的值,从而实现动态的频率补偿。与传统方法相比,该电路大大提高了系统的瞬态响应性能。 关键词:LDo;稳定性;ESR;动态频率补偿
上传时间: 2013-11-14
上传用户:gtf1207
绪论 3线性及逻辑器件新产品优先性计算领域4PCI Express®多路复用技术USB、局域网、视频多路复用技术I2C I/O扩展及LED驱动器RS-232串行接口静电放电(ESD)保护服务器/存储10GTL/GTL+至LVTTL转换PCI Express信号开关多路复用I2C及SMBus接口RS-232接口静电放电保护消费医疗16电源管理信号调节I2C总线输入/输出扩展电平转换静电放电保护 手持设备22电平转换音频信号路由I2C基带输入/输出扩展可配置小逻辑器件静电放电保护键区控制娱乐灯光显示USB接口工业自动化31接口——RS-232、USB、RS-485/422继电器及电机控制保持及控制:I2C I/O扩展信号调节便携式工业(掌上电脑/扫描仪) 36多路复用USB外设卡接口接口—RS-232、USB、RS-485/422I2C控制静电放电保护 对于任意外部接口连接器的端口来说,静电放电的冲击一直是对器件可靠性的威胁。许多低电压核心芯片或系统级的特定用途集成电路(ASIC)提供了器件级的人体模型(HBM)静电放电保护,但无法应付系统级的静电放电。一个卓越的静电放电解决方案应该是一个节省空间且经济高效的解决方案,可保护系统的相互连接免受外部静电放电的冲击。
上传时间: 2013-10-18
上传用户:mikesering