matlab写的简单的联想网络实例,模拟dog,meat,light生物条件反射实验
上传时间: 2017-08-07
上传用户:450976175
指纹识别作为一种生物鉴定技术,为人类的个体的定义提供了一个到目前为止最为快捷和可信的方法。随着指纹识别的普及,人们之间的信任成本将大大降低,提高人类社会活动的效率。在信息时代,一种安全便捷的身份认证方式显得越发重要。这个matlab程序是一个简易的指纹识别程序
上传时间: 2015-05-26
上传用户:1600650036
遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。 遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。 遗传算法有三个进化算子:选择(复制)、交叉和变异。 SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。 交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。 变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。 遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。 由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。 下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。
标签: 遗传算法
上传时间: 2015-06-04
上传用户:芃溱溱123
信息化战争是一种充分利用信息资源并依赖于信息的战争形态,是指在信息技术高度发展以及信息时代核威慑条件下,交战双方以信息化军队为主要作战力量,在陆、海、空、天、电等全维空间展开的多军兵种一体化的战争,依托网络化信息系统,大量地运用具有信息技术,新材料技术,新能源技术,生物技术,航天技术,海洋技术等当代高新技术水平的常规的武器装备,并采取相应的作战方法,在局部地区进行的,目的手段规模均较有限的战争。
上传时间: 2015-06-04
上传用户:dfhjdsh
粒子群算法在仿真生物群体社会活动的基础上,通过模拟群体生物相互协同寻优能力,从而构造出一种新的智能优化算法。本文主要讲述了粒子群算法的基本原理及其一些改进算法以及其改进算法的一些应用。
标签: 粒子群算法
上传时间: 2015-07-10
上传用户:yjyzwr
初识STM32F4系列ARM,STM32F4系列基于ARM® Cortex™-M4内核,采用了90纳米的NVM工艺和ART
上传时间: 2017-04-02
上传用户:xhl2733
详细的讲解了材料的初始构成,电池的结构,动力学,热力学,以及现代实验常采用的制备纳米材料的方法,包括气相法和液相法。
上传时间: 2017-04-11
上传用户:三金1234
遗传算法,模拟达尔文进化论的自然选择和遗传学机理的生物进化过程的计算模型,一种选择不断选择优良个体的算法。谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个体基本上是最优的,那么以后再继续这样下去就可以一直最优了。
上传时间: 2017-06-12
上传用户:tian610115
Lithium–sulfur (Li–S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li–S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li–S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li–S batteries are discussed. Nanostructured metal oxides/ sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium- metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li–S batteries with nanostructured metal oxides/sulfides are also discussed.
上传时间: 2017-11-23
上传用户:653357637
遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。 背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为,传统上采用动态规划来求解。设w是经营活动 i 所需要的资源消耗,M是所能提供的资源总量,p是人们经营活动i得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。
上传时间: 2018-04-26
上传用户:jiazhe110125