这是ucos的教程,比较相近的介绍了ucos2系统的架构,代码分析,应用等,花了很多钱买的资料
上传时间: 2014-01-16
上传用户:ggwz258
汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
标签: the animation Simulate movement
上传时间: 2017-02-11
上传用户:waizhang
将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)
上传时间: 2013-12-19
上传用户:aix008
本代码为编码开关代码,编码开关也就是数字音响中的 360度旋转的数字音量以及显示器上用的(单键飞梭开 关)等类似鼠标滚轮的手动计数输入设备。 我使用的编码开关为5个引脚的,其中2个引脚为按下 转轮开关(也就相当于鼠标中键)。另外3个引脚用来 检测旋转方向以及旋转步数的检测端。引脚分别为a,b,c b接地a,c分别接到P2.0和P2.1口并分别接两个10K上拉 电阻,并且a,c需要分别对地接一个104的电容,否则 因为编码开关的触点抖动会引起轻微误动作。本程序不 使用定时器,不占用中断,不使用延时代码,并对每个 细分步数进行判断,避免一切误动作,性能超级稳定。 我使用的编码器是APLS的EC11B可以参照附件的时序图 编码器控制流水灯最能说明问题,下面是以一段流水 灯来演示。
上传时间: 2017-07-03
上传用户:gaojiao1999
【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。
标签: 点阵
上传时间: 2014-06-21
上传用户:llandlu
随着经济全球化和信息技术的迅速发展,信息资源被看作是获得未来物流竞争优势的关键因素之一,物流信息网的广泛兴起,一方面降低物质消耗,另一方面提高了劳动生产率,本文在总结系统需求分析的基础上,提出系统的总体设计目标、系统总体架构和功能模块的设计。
上传时间: 2013-12-03
上传用户:13681659100
电子商务(Electronic Commerce)是互联网上出现的新概念。它是利用计算机技术、网络技术和远程通信技术,实现整个商务(买卖)过程中的电子化、数字化和网络化。随着它的广泛使用,给人们带来了便利,并逐渐改变了人们的生活方式. 国内在线购物网站多数是用ASP,PHP技术实现的,而基于JSP的优秀网站较少。本系统——网上图书超市采用JSP+JavaBean+ SQL Server数据库三层模式设计并实现。本论文详细地阐述了系统的需求分析、系统总体架构、详细设计以及模块的实现过程,主要实现了以下模块功能:会员注册、登录/注销;用户管理;浏览图书详细信息;图书搜索;图书管理;购物车;订单;订单管理等。
标签: Electronic Commerce 电子商务 互联网
上传时间: 2017-09-01
上传用户:xymbian
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
论文首先论述了线性稳压电源的基本原理,以此为基础对系统设计进行整体考虑,构建了系统整体架构,并制定了芯片的设计指标。利用小信号分析的方法对系统稳定性进行了分析讨论,根据系统稳定性原理,采用电容反馈补偿措施以确保系统稳定可靠根据设计指标,论文详细设计了芯片内部电路模块,包括:带隙基准电压源、误差放大器、过热保护、过流保护和使能电路等,通过综合比较晶体管的性能,确定调整管的类型,在基准电生源设计中,采用了电流相加的新型电路结构,使输出基准电压不仅具有良好的温度特性和电源电压抑制特性,而且克服了传统电路结构电压基准源的输出电压不能改变的缺点,提高了模块的可移植性,并充分考虑了低电压低功耗设计;在过热保护电路设计中,采用温度迟滞系统,克服了单温度保护点电路易受温度变化误触动的缺点。借助Cadence Spectre仿真软件完成仿真验证,实验结果表明,该系统在正常工作时,能得到3V稳定的输出电压,压降仪为150mv;在1K时电源抑制比为65.55dB,在10K时电源抑制比为50dB:在温度范围(-30℃-90℃)内系统能保持良好的稳定性,达到了设计要求,并完成了主要电路模块的版图设计与验证。
上传时间: 2022-06-23
上传用户: