图是脉冲式充电器电路。图(a)为充电器电路,图(b)为充电器框图,由基准电压、时钟脉冲、充电控制和恒流部分等组成。工作原理简述如下:
上传时间: 2013-04-24
上传用户:zhang469965156
·作 者: 袁任光 I S B N: 7111144716 页 数: 676 开 本: 32开 重 量: 460克 封面形式: 简裝本 出 版 社: 机械工业出版社 本社特价书 出版日期: 2004-7-1 定 价: 30元
上传时间: 2013-07-05
上传用户:LouieWu
电路连接 由于数码管品种多样,还有共阴共阳的,下面我们使用一个数码管段码生成器(在文章结尾) 去解决不同数码管的问题: 本例作者利用手头现有的一位不知品牌的共阳数码管:型号D5611 A/B,在Eagle 找了一个 类似的型号SA56-11,引脚功能一样可以直接代换。所以下面电路图使用SA56-11 做引脚说明。 注意: 1. 将数码管的a~g 段,分别接到Arduino 的D0~D6 上面。如果你手上的数码管未知的话,可以通过通电测量它哪个引脚对应哪个字段,然后找出a~g 即可。 2. 分清共阴还是共阳。共阴的话,接220Ω电阻到电源负极;共阳的话,接220Ω电阻到电源+5v。 3. 220Ω电阻视数码管实际工作亮度与手头现有原件而定,不一定需要准确。 4. 按下按钮即停。 源代码 由于我是按照段码生成器默认接法接的,所以不用修改段码生成器了,直接在段码生成器选择共阳极,再按“自动”生成数组就搞定。 下面是源代码,由于偷懒不用写循环,使用了部分AVR 语句。 PORTD 这个是AVR 的端口输出控制语句,8 位对应D7~D0,PORTD=00001001 就是D3 和D0 是高电平。 PORTD = a;就是找出相应的段码输出到D7~D0。 DDRD 这个是AVR 语句中控制引脚作为输出/输入的语句。DDRD = 0xFF;就是D0~D7 全部 作为输出脚了。 ARDUINO CODECOPY /* Arduino 单数码管骰子 Ansifa 2011-12-28 */ //定义段码表,表中十个元素由LED 段码生成器生成,选择了共阳极。 inta[10] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90}; voidsetup() { DDRD = 0xFF; //AVR 定义PortD 的低七位全部用作输出使用。即0xFF=B11111111对 应D7~D0 pinMode(12, INPUT); //D12用来做骰子暂停的开关 } voidloop() { for(int i = 0; i < 10; i++) { //将段码输出PortD 的低7位,即Arduino 的引脚D0~D6,这样需要取出PORTD 最高位,即 D7的状态,与段码相加,之后再输出。 PORTD = a[i]; delay(50); //延时50ms while(digitalRead(12)) {} //如果D12引脚高电平,则在此死循环,暂停LED 跑 动 } }
上传时间: 2013-10-15
上传用户:baitouyu
整流滤波电路是直流稳压电源设备中常用电路,其中滤波电容的设计选取,直接影响到纹波电压的大小,关系到输出直流电压的质量。本文通过在设定条件下,依据整流滤波电路原理,阐述了纹波电压产生的过程,给出了一种滤波电容设计与选取计算方法,建立了电容选取的计算模型,描绘出了纹波电压、负载电阻与滤波电容之间关系曲线,并通过实验验证其科学性,有利于滤波电容的设计与选用。
上传时间: 2013-11-11
上传用户:kytqcool
在高速数字电路飞速发展的今天,信号的频率不断提高, 信号完整性设计在P C B设计中显得日益重要。其中由于传输线效应所引起的信号反射问题是信号完整性的一个重要方面。本文研究分析了高速PCB 设计中的反射问题的产生原因,并利用HyperLynx 软件进行了仿真,最后提出了相应的解决方法。
上传时间: 2013-10-16
上传用户:2728460838
Pspice教程课程内容:在这个教程中,我们没有提到关于网络表中的Pspice 的网络表文件输出,有关内容将会在后面提到!而且我想对大家提个建议:就是我们不要只看波形好不好,而是要学会分析,分析不是分析的波形,而是学会分析数据,找出自己设计中出现的问题!有时候大家可能会看到,其实电路并没有错,只是有时候我们的仿真设置出了问题,需要修改。有时候是电路的参数设计的不合理,也可能导致一些莫明的错误!我觉得大家做一个分析后自己看看OutFile文件!点,就可以看到详细的情况了!基本的分析内容:1.直流分析2.交流分析3.参数分析4.瞬态分析进阶分析内容:1. 最坏情况分析.2. 蒙特卡洛分析3. 温度分析4. 噪声分析5. 傅利叶分析6. 静态直注工作点分析数字电路设计部分浅谈附录A: 关于Simulation Setting的简介附录B: 关于测量函数的简介附录C:关于信号源的简介
上传时间: 2014-12-24
上传用户:plsee
磁芯电感器的谐波失真分析 摘 要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。 一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。 图中 ZD —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB, Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz, 使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁
上传时间: 2014-12-24
上传用户:7891
电路板级的电磁兼容设计:本应用文档从元件选择、电路设计和印制电路板的布线等几个方面讨论了电路板级的电磁兼容性(EMC)设计。本文从以下几个部分进行论述:第一部分:电磁兼容性的概述第二部分:元件选择和电路设计技术第三部分:印制电路板的布线技术附录A:电磁兼容性的术语附录B:抗干扰的测量标准第一部分 — 电磁干扰和兼容性的概述电磁干扰是现代电路工业面对的一个主要问题。为了克服干扰,电路设计者不得不移走干扰源,或设法保护电路不受干扰。其目的都是为了使电路按照预期的目标来工作——即达到电磁兼容性。通常,仅仅实现板级的电磁兼容性这还不够。虽然电路是在板级工作的,但是它会对系统的其它部分辐射出噪声,从而产生系统级的问题。另外,系统级或是设备级的电磁兼容性必须要满足某种辐射标准,这样才不会影响其他设备或装置的正常工作。许多发达国家对电子设备和仪器有严格的电磁兼容性标准;为了适应这个要求,设计者必须从板级设计开始就考虑抑制电子干扰。
上传时间: 2013-10-12
上传用户:xiaoyaa
计一种基于Howland电流源电路的精密压控电流源,论述了该精密压控电流源的原理。该电路以V/I转换电路作为核心,Howland电流源做为误差补偿电路,进一步提高了电流源的精度,使绝对误差仿真值达到nA级,实际电路测量值绝对误差达到?滋A级,得到高精度的压控电流源。仿真和实验测试均证明该方案是可行的。
上传时间: 2014-12-24
上传用户:sklzzy
这里仅讨论电容及电感值的选取。种类的选取,则需要更多的工程实践,更多的RF电路的经验,这里不再讨论。从理论上讲,隔直电容、旁路电容的容量应满足。显然,在任何角频率下,这在工程上是作不到的。电容量究竟取多大是合理的呢?图1-5(a),(b)给出了隔直电容(多数情况下,这个电容又称为耦合电容)和旁路电容的使用简化
上传时间: 2013-11-12
上传用户:13188549192