📚 粒子群优化技术资料

📦 资源总数:4978
💻 源代码:5910
粒子群优化(ParticleSwarmOptimization,PSO),又称微粒群算法,是由J.Kennedy和R.C.Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M.M.Millonas在开发应用于人工生命(artificiallife)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

🔥 粒子群优化热门资料

查看全部4978个资源 »

舰船电力系统网络重构可以看作为一个多目标、多约束、多时段、离散化的非线性规划最优问题。根据舰船电力系统特点,提出了一种改进的粒子群优化算法。在传统粒子群算法的基础上,运用混沌优化理论进行初始化粒子的初始种群,提升初始解质量;同时,引进遗传操作以改进粒子群算法易陷入局部极值的缺点。通过对典型的模型仿真...

📅 👤 AbuGe

模糊C-均值聚类算法是一种无监督图像分割技术,但存在着初始隶属度矩阵随机选取的影响,可能收敛到局部最优解的缺点。提出了一种粒子群优化与模糊C-均值聚类相结合的图像分割算法,根据粒子群优化算法强大的全局搜索能力,有效地避免了传统的FCM对随机初始值的敏感,容易陷入局部最优的缺点。实验表明,该算法加快了...

📅 👤 llandlu

💻 粒子群优化源代码

查看更多 »
📂 粒子群优化资料分类