基于BP神经网络算法PID控制器的研究与仿真
文中将BP神经网络的原理应用于参数辨识过程,结合传统的 PID控制算法,形成一种改进型BP神经网络PID控制算法。该算法利用BP神经网络建立系统参数模型,能够跟踪被控对象的变化,取得较高的辨识精度。针对BP神经网络对权系初始值敏感的缺点,优化BP神经网络的初始权系数。通过BP算法修正BP网络自身权系...
文中将BP神经网络的原理应用于参数辨识过程,结合传统的 PID控制算法,形成一种改进型BP神经网络PID控制算法。该算法利用BP神经网络建立系统参数模型,能够跟踪被控对象的变化,取得较高的辨识精度。针对BP神经网络对权系初始值敏感的缺点,优化BP神经网络的初始权系数。通过BP算法修正BP网络自身权系...
针对传统PID控制系统参数整定过程存在的在线整定困难和控制品质不理想等问题,结合BP神经网络自学习和自适应能力强等特点,提出采用BP神经网络优化PID控制器参数。其次,为了加快BP神经网络学习收敛速度,防止其陷入局部极小点,提出采用粒子群优化算法来优化BP神经网络的连接权值矩阵。最后,给...
文中应用电磁场全波仿真工具SIwave构建信号跨层走线模型,从电源分配网络(PDN)阻抗的角度分析了跨层走线对信号传输的影响,同时使用添加电容的方法优化信号传输路径,并对电容的选取及其位置的确定进行了研究,为PCB设计提供参考。 ...
提出了一个自适应量子粒子群优化算法,用于训练RBF网络的基函数中心和宽度,并结合最小二乘法计算网络权值,对RBF网络的泛化能力进行改进并用于特征选择。实验结果表明,采用自适应量子粒子群优化算法获得的RBF网络模型不但具有很强的泛化能力,而且具有良好的稳定性,能够选择出较优秀的特征子集。...
主要讲解linux内核移植与优化.移植的部分多是细节问题,关键的是优化部分,linux作为支撑平台,系统的高效运行对整个系统性能的提升重要性很大。...