虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

移动自组织网络

  • 非线性系统多模型自适应控制研究

    1.针对一类参数未知的非线性离散时间动态系统,提出了一种新的基于神经网络的MMAC方法。首先,将系统分为线性部分和非线性部分。针对系统线性部分采用局部化方法逮立多个固定模型覆盖系统的参数范围,在此基础上,建立自适应模型来提高系统性能;针对系统非线性部分建立非线性神经网络预测模型来邏近系统的非线性。然后,针对每个子模型设计相应的擅制器。最后,设计基于误差范数形式的性能指标函数对控制器进行硬切换。仿真结果表明,所提出的MMAC方法与传统的在参数空间均匀分布的MMAC方法相比能显著提高非线性系统的暂态性能。2针对一类具有参数跳变的非线性离散时间动态系统,提出子一种基才聚类方法和神经网络的MMAC方法,首先,采用模糊c均值聚类算法对系统先验数据进行分类处理,再分别对每类数据采用RLS算法建立多个固定模型。在此基础上,建立两个白适应模型来提高系统响应速度和控制品质,建立神经网络预测模型来补偿系统非线性。然后,分别针对相应的子模型设计线性鲁棒自适应控制器和神经网络控制器。最后,采用基于信号有界和测量误差的性能切换指标对控制器进行切换,并证明闭环系统的稳定性。仿真结果表明,所提出的算法能更好地解决非线性系统发生参数跳变问题,使得系统具有良好的控制品质3.针对MMAC方法中的模型库优化问题,考虑系统实际运行数据,提出了种基于相似度准则和设置最大模型数的动态优化模型库方法。该方法能对新数据进行综合考量并判断是否应该将该数据纳入子模型建模,并通过设置最大模型数来确保系统用最少的子模型就能保证系统的控制性能。仿真结果表明,所提出的算法能极大地减少子模型数量且具有较好的控制效果。关键词:非线性系统;多模型方法;自适应控制;模糊聚类;神经网络

    标签: 自适应控制

    上传时间: 2022-03-11

    上传用户:

  • 某型燃气轮机建模与自适应控制研究

    建模、控制算法研究以及仿真试验都是燃气轮机研制过程中必不可少的环节,本文针对三者展开研究首先,采用容积惯性法代替牛顿-拉普逊法建立三轴燃气轮机非线性动态模型,并考虑变比热、引气与冷却等环节,通过与试车数据比较验证了所建模型具有良好的仿真精度。采用容积惯性法不但提高了模型的实时性,并且动态过程更接近真实燃气轮机运转状态。分析了容积惯性法建模中低转速阶段仿真时出现的参数振荡现象产生的原因,通过增加低转速特性数据消除了参数振荡,并提出了一种基于指数平衡与样条拟合的外推方法来获得低转速特性数据。通过低压压气机特性数据外推计算与分析,证明了该外推方法具有较好的准确性。然后,针对重型燃气轮机非线性强、惯性大和负载多变等特点,提出了一种基于深度信念网络的自适应控制器。该控制器结合了深度信念网络和传统PD控制器,其中深度信念网络作用是在线调整PID参数,而传统PD控制器负责控制量的计算与输出。通过数字仿真,验证了该控制器满足燃气轮机转速控制的要求,并且具有良好的自适应性,在燃气轮机不同工况下,能够对其转速进行准确控制,使得系统快速响应的同时无超调量。最后,针对燃气轮机硬件在环仿真平台的需要,设计了一种能够采集并模拟多种范围电压、电流与频率信号的接口模拟器。搭建了燃气轮机硬件在环控制平台,在试验前对接口模拟器以及控制器进行了标定与平台的实时性验证。在已有的控制器上,完成了基于RIX作系统的多任务嵌入式控制系统开发。通过硬件在环试验,进一步验证了本文设计的控制器具有良好的控制效果与较强的自适应能力关键词:燃气轮机,容积惯性,建模,仿真,自适应控制,深度信念网络,硬件在环

    标签: 自适应控制

    上传时间: 2022-03-14

    上传用户:

  • 无线传感器网络中基于模糊理论的决策级数据融合技术的分析

    摘要:无线传感器网络(Wireless Sensor Networks,wSN是由许多具有低功率无线收发装置的传感器节点组成,它们监测采集周边环境信息并传送到基站进行处理在某一时刻通过wSN采集的数据量非常大,如何正确、高效地处理这些数据成为当前WSN研究中的一个热点。传感器节点一般部署在恶劣环境中,一些偶然因素会使采集的数据中出现不准确的数据,用户依据这样的数据很难准确判断出被测对象的真实状态。基于模糊理论的决策级数据融合算法能够很好的解决这个问题本文以国家863研究项目《基于无线传感器网络的铁路危险货物在途安全状态监测技术研究》为背景,结合铁路运输中棉花在途状态监测系统的开发,在分析了当前有效的决策级数据融合技术基础上,提出了基于模糊理论的决策级数据融合算法,该算法通过对采集数据进行处理和分析,以获得准确的被测对象状态的描述。本文的主要工作包括:(1)分析了WSN中传统的决策级数据融合算法,如自适应加权数据融合算法和算术平均数数据融合算法,总结这两种算法的优缺点和检测系统的需求,进步明确理想算法应达到的目标。(2)提出了基于模糊理论的两阶段数据融合算法:该算法第一阶段利用基于贴近度的数据融合算法进行同类数据的融合校准,这一阶段的目的是剔除错误的和可信度较差的数据,得到相对更加准确的数据,第二阶段利用模糊推理对第个阶段得到的异类数据进行融合推理,得到被测对象当前状态的描述,为决策提供支持(3)结合实测数据仿真本文所提出的算法,结果证明与传统的融合算法相比,可以更加准确的描述被测对象状态

    标签: 无线传感器

    上传时间: 2022-03-17

    上传用户:

  • 5V-2A充放电的移动电源芯片ETA9740手册

    ETA9740是5V-2A充放电的移动电源芯片,常开5V,自动负载启动,内置9V耐压能力,可用于移动电源,自带4个LED电量灯,采用了ESOP8封装。

    标签: 移动电源 电源芯片

    上传时间: 2022-04-21

    上传用户:

  • 国外优秀信息科学与技术系列教学用书-自适应滤波器原理(中文第四版)赫金pdf格式745页全本

             本书是自适应信号处理领域的一本经典教材。全书共17章,内容包括:自适应LMS横向滤波器、自适应格型滤波器、自适应递归滤波器、频域和子带自适应滤波器、盲自适应滤波器、神经网络、非线性自适应滤波器等及其在通信与信息系统中的应用。目录背景与预览第1章 随机过程与模型第2章 维纳滤波器第3章 线性预测第4章 最速下降算法第5章 最小均方自适应滤波器第6章 归一化最小均方自适应滤波器第7章 频域和子带自适应滤波器第8章 最小二乘法第9章 递归最小二乘自适应滤波器第10章 卡尔曼滤波器第11章 平方根自适应滤波器第12章 阶递归自适应滤波器第13章 有限精度效应第14章 时变系统的跟踪第15章 无限脉冲响应自适应滤波器第16章 盲反卷积第17章 反向传播学习后记附录A 复变量附录B 对向量微分附录C 拉格朗日乘子法附录D 估计理论附录E 特征分析附录F 旋转和映射附录G 复数Wishart分布术语参考文献      现在网上流传的技术类书籍好多都是预览版本,此书为全本,非常难得,现在分享给大家,希望对大家有所帮助。

    标签: 自适应滤波器

    上传时间: 2022-05-14

    上传用户:默默

  • 2G网络在物联网中的应用

    谈起2G网络给人的第一印象应该是2G手机,不过2G手机已经被淘汰了多年了,但如今在物联网领域中应用非常广泛。可移动的户外的物联网产品中,2G占据了一大半的份额。

    标签: 2g网络 物联网

    上传时间: 2022-06-05

    上传用户:bluedrops

  • 5G无线网络规划解决方案白皮书(华为)

    移动通信深刻地改变了人们的生活,面向2020年,为了应对未来爆炸式的流量增长、海量的设备连接和不断涌现的新业务新场景,第五代移动通信系统应运而生。2015年6月ITU定义的5G未来移动应用包括以下三大领域:» 增强型移动宽带 (eMBB):人的通信是移动通信需要优先满足的基础需求。未来eMBB将通过更高的带宽和更短的时延继续提升人类的视觉体验;» 大规模机器类通信(mMTC):针对万物互联的垂直行业,IoT产业发展迅速,未来将出现大量的移动通信传感器网络,对接入数量和能效有很高要求;» 高可靠低时延通信(uRLLC):针对特殊垂直行业,例如自动驾驶、远程医疗、智能电网等需要高可靠性+低时延的业务需求。

    标签: 5g 无线网络

    上传时间: 2022-06-12

    上传用户:d1997wayne

  • 基于遗传算法的BP神经网络的优化研究及MATLAB仿真

    随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。

    标签: 遗传算法 bp神经网络 matlab

    上传时间: 2022-06-16

    上传用户:jiabin

  • 大黄蜂云课堂开源网络课堂源码----高级版

    大黄蜂云课堂使用国内优秀开源框架THinkPHP,基于PHP+MySQL开发,采用B/S架构,是为中小企业提供的开源视频管理系统,在线教育系统,网上教学视频系统,在线培训、视频课程网站、免费视频课程系统,DSKMS专注于内容付费的源代码系统。大黄蜂云课堂是由深圳市超时代软件有限公司研发的新一代在线教育产品,采用开源框架THinkPHP,基于PHP+MySQL开发,为学校、培训机构及企业提供方便易用的在线教育系统。大黄蜂开源网校系统功能特点:1、独创学习引擎,打造互动式课堂大黄蜂独创的学习引擎,开发了一对一直播、大班直播、点播课程、音频课程、作业、考试等12种教学手段,让教育机构按需打造个性化的教学模式。2、题库系统,智能化开展考试测评大黄蜂独立研发的在线题库平台是针对试题管理、智能组卷、在线做题、课后作业、模拟考试的需求所提供的整体的解决方案。3、移动端学习,把学校装进口袋配套大黄蜂云课堂APP、专为微信端优化的微网校和小程序,满足学员碎片化学习需求,随时随地在线学习。4、云视频专为在线教育研发的视频技术-TLP2.0专利技术,加密传输,动态解密播放,实现了盗版溯源等。5、微信营销平台,实现网校快速引流微营销工具、微网校和小程序,无缝对接网校微信公众号和社群,打造网校微信运营生态,轻松实现快速引流。6、智能营销系统,招生转化率翻倍从定位目标客户到促销成交,多种工具帮助网校打通招生转化路径,从招生到课程营销,营收增长80%。7、网校管理ERP,让你轻松掌握运营管理可视化图表结合面板式管理后台,让网校的管理轻松高效。

    标签: 网校系统源码 在线教育源码 网络课堂源码

    上传时间: 2022-06-17

    上传用户:

  • 神经网络设计+.+美国+Hagan.清晰版

    本书主要讲述神经网络的基本概念,介绍实用的网络模型、学习规则和训练方法。全书分19章,内容涵盖神经元模型和网络结构、感知机学习规则、有监督的Hebb学习、Widrow—Hoff学习算法、反向传播算法及其变形、联想学习、竞争网络、Grossberg网络、自适应谐振理论和Hopfield网络。书中注重对数学分析方法和性能优化的讨论,强调神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。同时本书包含大量例题、习题,并配有基于MATLAB软件包的“神经网络设计演示&

    标签: 神经网络

    上传时间: 2022-06-21

    上传用户:默默