本电路所选用的是AT89C2051可编程的高性能小型单片机。AT89C2051内含有Flash存储器,所以可反复使用。用AT89C2051开发电子制作,安全性高,制作简单,调试方便,功能多样,容易调动起学生的兴趣,开发学生动手动脑的积极性。
上传时间: 2013-12-20
上传用户:wpt
数字抢答器由主体电路与扩展电路组成。优先编码电路、锁存器、译码电路将参赛队的输入信号在显示器上输出;用控制电路和主持人开关启动报警电路,以上两部分组成主体电路。通过定时电路和译码电路将秒脉冲产生的信号在显示器上输出实现计时功能,构成扩展电路。经过布线、焊接、调试等工作后数字抢答器成形。
上传时间: 2017-02-01
上传用户:refent
此程序本人调试OK,适合初学液晶的人. 此附件包含C源程序、原理图、液晶说明书和汉字取模软件. 我调试过程中使用的STK500,所以只用按此原理图连线即可,RC复位电路STK500上已有,就不用自己加了
上传时间: 2014-01-26
上传用户:zhenyushaw
美国DALLAS公司推出的具有涓细电流充电能力的低功耗实时时钟电路DS1302的结构、工作原理及其在实时显示时间中的应用。它可以对年、月、日、周日、时、分、秒进行计时,且具有闰年补偿等多种功能。给出DS1302在读写中的C51程序及流程图,以及在调试过程中的注意事项。
上传时间: 2013-12-21
上传用户:希酱大魔王
项目的研究内容是对硅微谐振式加速度计的数据采集电路开展研究工作。硅微谐振式加速度计敏感结构输出的是两路差分的频率信号,因此硅微谐振式加速度计数据采集电路完成的主要任务是测出两路频率信号的差值。测量要求是:实现10ms内对中心谐振频率为20kHz、标度因数为100Hz/g、量程为±50g、分辨率为1mg的硅微谐振式加速度计输出的频率信号的测量,等效测量误差为±1mg。电路的控制核心为单片机,具有串行接口以便将测量结果传送给PC机从而分析、保存测量结果。 按研究内容设计了软硬件。软件采用多周期同步法实现高精度,快速度的频率测量方案,并使用CPLD编程实现,这也是最难的地方。硬件采用现在流行的3.3V供电系统,选用EPM240T100C5N和较为实用的AVR单片机芯片Atmega64L,对应3.3V供电系统,串行接口使用MAX3232。 最后完成了PCB板的制作,经反复调试后得到了非常好的效果。采集的数据满足项目研究内容中的要求,当提高有源晶振的频率时,精度有大大提高了,此时已远远满足了项目中高精度,快速度测量的要求。另外,采用MFC编程编写了上位机的数据接收和数据处理专用软件,集数据采集,运算,作图,保存功能于一体。 此为CPLD语言部分
上传时间: 2013-12-09
上传用户:奇奇奔奔
项目的研究内容是对硅微谐振式加速度计的数据采集电路开展研究工作。硅微谐振式加速度计敏感结构输出的是两路差分的频率信号,因此硅微谐振式加速度计数据采集电路完成的主要任务是测出两路频率信号的差值。测量要求是:实现10ms内对中心谐振频率为20kHz、标度因数为100Hz/g、量程为±50g、分辨率为1mg的硅微谐振式加速度计输出的频率信号的测量,等效测量误差为±1mg。电路的控制核心为单片机,具有串行接口以便将测量结果传送给PC机从而分析、保存测量结果。 按研究内容设计了软硬件。软件采用多周期同步法实现高精度,快速度的频率测量方案,并使用CPLD编程实现,这也是最难的地方。硬件采用现在流行的3.3V供电系统,选用EPM240T100C5N和较为实用的AVR单片机芯片Atmega64L,对应3.3V供电系统,串行接口使用MAX3232。 最后完成了PCB板的制作,经反复调试后得到了非常好的效果。采集的数据满足项目研究内容中的要求,当提高有源晶振的频率时,精度有大大提高了,此时已远远满足了项目中高精度,快速度测量的要求。另外,采用MFC编程编写了上位机的数据接收和数据处理专用软件,集数据采集,运算,作图,保存功能于一体。 此为上位机程序部分
上传时间: 2017-02-13
上传用户:大三三
为一家电动自行车厂家设计的电路,里面有protel原理图+pcb,控制器是C8051,各种保护电路都有,此电路已成功在实验平台上调试通过,性价比高,请放心参考。研发电动车驱动电路的朋友不妨看看哦。
上传时间: 2017-02-24
上传用户:gxmm
ARM JTAG调试原理, jtag电路图, JTAG及其对Flash的在线编程, 满足的嵌入式系统电路特性测试需求的JTAG技术
上传时间: 2014-01-21
上传用户:zhaoq123
功率开关器件全桥电路设计,经调试,绝对正确
上传时间: 2017-05-30
上传用户:lunshaomo
这是支持MF RC500 MIFARE 读写集成电路IC的有关射频设计的应用笔记。意在提供对MIFARE 射频接口(ISO 14443A)所需的理解来设计具体天线应用和匹配电路,为了使无接触MIFARE卡通信有最优表现。本文给出了系统的RF部分背景,以及如何为标准应用设计和调试天线的过程概述。详细说明了两种不同的天线和匹配概念以及它们的设计实例。还描述了完整的调试天线的步骤。作为附件的一部分,有兴趣的读者会发现RF接口的详细理论描述
上传时间: 2014-01-07
上传用户:ynsnjs