虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

电源<b>滤波电路</b>

  • 电容降压式电源

      电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。   整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

    标签: 电容 降压式电源

    上传时间: 2013-10-23

    上传用户:牛津鞋

  • 小信号放大电路设计

    摘 要: 在纺织纱线的张力测试中,为了对小张力进行有效的测试, 利用电阻应变传感器作为信号转换器件, 通 过对其输出信号进行分析, 设计出相应的小信号放大滤波电路。设计应用了高精度斩波稳零运算放大器芯片 TLC2652作为小信号放大电路的核心器件,实验证明其放大效果理想,并给出了相应的实验数据。

    标签: 小信号 放大 电路设计

    上传时间: 2014-12-26

    上传用户:zhangjinzj

  • led旋转显示器

    LED旋转显示器时基于视觉暂留原理,开发的一种旋转式LED显示屏。其在具有一定转速地载体上安装16个LED发光器件,各LED发光管等间距排位一条直线,随着旋转速度的加快,在计算机软件精确的时序控制下,不断扫描出预设的文字,图案等。使用一个光耦(U型槽的红外对管)作为定位传感器,当旋转一周时,挡光板遮挡光源,光敏三极管的集电极输出高电平,当离开挡光板时,集电极再次输出低电平,从而给单片机一个下降沿的跳变型号,产生一个中断,从而更新显示。供电部分,因为整个装置是在不停的高速旋转当中,所以我们做了一个简单的电刷装置,把220V的交流电通过变压器变成12V的交流电,再由桥式整流电路,和滤波电路,变为平滑的直流电,最后通过7805芯片输出我们需要的5V直流电源,通过电刷把电源和指针板上的单片机连接为其供电。而旋转载体因为需要12V的电压源,所以采用分别供电的方式。

    标签: led 旋转 显示器

    上传时间: 2013-11-21

    上传用户:时代电子小智

  • 单片机控制的铅酸蓄电池充电电源

     为了有效地提升铅酸蓄电池的使用寿命,同时实现对充电过程的监控,设计出一种用单片机控制的36 V铅酸蓄电池充电电源。本电路采用反激式拓扑,连续电流工作模式,电源管理IC设计在电源的副边,由ELAN公司的EM78P258N单片机模拟,是用可编程器件模拟电源管理IC,实现智能电源低成本化的一次成功尝试,通过对单片机的软件设计实现了充电电源的状态显示、充电时间控制、报警、过温保护、过压保护、过流保护等功能。本充电器真正的实现了铅酸蓄电池的三段式充电过程,其最高输出功率可达90 W,效率约85%,成本不到20元,具有很高的市场竞争力。 Abstract:  In order to extend the life of lead-acid battery efficiently and supervise the charging process meanwhile, a 36V lead-acid battery charge powe supply controlled by microcontroller is designed. The charger is flyback switching power supply and works in CCM mode. A EM78P258N microcontroller made by ELAN microelectronics corporation is used as power management IC which is designed at the secondary circuit. The project is a successful attempt to low-cost intelligent power used microcontroller simulating power management IC. The charger also has the functions of the status reveal, charge time control, alarming, thermal protect, current limit and overvoltage protect by the software design. The circuit actually implements the three-step charge process, whose power is up to 90W and whose efficiency can get 85%. The net cost of this charger is less than 20 RMB, so that the charger is of powerful market competitiveness.    

    标签: 单片机控制 充电电源 铅酸蓄电池

    上传时间: 2013-11-16

    上传用户:cepsypeng

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • 基于ARM11处理器的嵌入式视频处理终端设计与实现

    基于ARM11的嵌入式视频处理终端设计 在研究了基于ARMl 1体系结构的Samsung$3C6410处理器的基 础上,给出了多格式视频编解码的使用方法和Windows CE下中断流 驱动的设计方法,为Windows CE操作系统下的图像采集和视频处理 的复杂控制提供了软件实现的方法;并以该处理器为核心,加上外部 存储器和USB摄像头等接口电路,完成了一个嵌入式视频处理终端 核心板的硬件原理图设计和PCB图的设计,并对视频处理终端的印 制电路板的电磁兼容进行了研究。 首先对嵌入式系统和视频处理进行了简单的介绍,指出了采用 $3C6410处理器设计的视频处理终端具有的优势。其次,对$3C6410 多格式视频编解码的使用进行了仔细分析,为多格式视频编解码软件 的编写提供了思路。给出了Windows CE下中断流驱动程序的设计方 法,为主处理器和BIT处理器在Windows CE下中断流驱动的设计提 供了一种较为通用的参考模型。第三,在熟悉了S3C64lO处理器的 体系结构基础上设计出了下列电路原理图:电源及复位电路,时钟电 路,DDR SDRAM和FLASH存储器电路,USB接口电路,串口电路, JTAG接口电路,LCD和TSP接口电路。整个嵌入式视频处理终端是 一个可以独立工作的可扩展系统,该系统主要用于图像采集和视频编 解码功能。另外,分别从滤波和接地等电磁兼容性设计手段出发,对 这些方法进行了理论分析,提出了提高视频处理终端电磁兼容的措 施。最后,通过编写简单的应用程序,视频处理终端对图像进行H.264 编码,可以通过无线网卡进行传输编码后的图像。测试结果表明,视 频处理终端能够实现视频图像的拍摄、压缩、无线视频传送和视频监 控等功能。

    标签: ARM 11 处理器 嵌入式

    上传时间: 2013-11-22

    上传用户:谁偷了我的麦兜

  • 模块使用外部滤波器回路来抑制信号抖动和电磁干扰。滤波器回路由PLL接在滤波器输入引脚PLLF和PLLF2之间的电阻Rl和电容Cl、C2组成。电容 Cl、C2必须为无极性电容。在不同的振荡器频率下

    模块使用外部滤波器回路来抑制信号抖动和电磁干扰。滤波器回路由PLL接在滤波器输入引脚PLLF和PLLF2之间的电阻Rl和电容Cl、C2组成。电容 Cl、C2必须为无极性电容。在不同的振荡器频率下,R1、Cl、C2的取值不同,常用的参数组合如表l所列。PLL模块的电源引脚PLLVCCA分别通过磁珠和0.1μF的电容与数字电源引脚VDD和数字地引脚VSS连接,构成低通滤波电路,保证时钟模块的可靠供电。模块使用外部滤波器回路来抑制信号抖动和电磁干扰。滤波器回路由PLL接在滤波器输入引脚PLLF和PLLF2之间的电阻Rl和电容Cl、C2组成。电容 Cl、C2必须为无极性电容。在不同的振荡器频率下,R1、Cl、C2的取值不同,常用的参数组合如表l所列。PLL模块的电源引脚PLLVCCA分别通过磁珠和0.1μF的电容与数字电源引脚VDD和数字地引脚VSS连接,构成低通滤波电路,保证时钟模块的可靠供电。

    标签: PLLF2 PLLF 滤波器 电容

    上传时间: 2014-01-07

    上传用户:ikemada

  • 本系统基于反馈控制思想

    本系统基于反馈控制思想,由交直流转换电路、DC-DC变换器、步进电路模块和显示模块4个模块电路构成开关稳压电源。交直流转换电路整流部分采用全波桥式整流电路形式,DC-DC变换器以TL494有主核心设计并加上简单滤波电路及RC放电回路所构成的回路控制器。它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。由单片机控制 数字定位器X9241的电阻,进而控制输出电压。显示模块由LCD1602构成。

    标签: 反馈控制

    上传时间: 2016-01-24

    上传用户:pkkkkp

  • 本系统基于反馈控制思想

    本系统基于反馈控制思想,由交直流转换电路、DC-DC变换器、步进电路模块和显示模块4个模块电路构成开关稳压电源。交直流转换电路整流部分采用全波桥式整流电路形式,DC-DC变换器以TL494有主核心设计并加上简单滤波电路及RC放电回路所构成的回路控制器。它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。由单片机控制 数字定位器X9241的电阻,进而控制输出电压。显示模块由LCD1602构成。

    标签: 反馈控制

    上传时间: 2014-01-05

    上传用户:gxf2016

  • 工业领域串口通信速度慢是个比较突出的问题

    工业领域串口通信速度慢是个比较突出的问题, 而 F T 2 4 5 B M 能够进行 US B和并行 I / O口之间的 协议转换, 在一些条件下能够取代串口. 介绍 F T 2 4 5 B M 芯片的工作原理和功能, 并给出基于 F T2 4 5 B M 的 US B接口电路的应用设计和基于 8 9 c 5 2的汇编及 c 5 1 单片机源程序.

    标签: 工业领域 串口通信 速度 比较

    上传时间: 2017-05-27

    上传用户:kytqcool