由于目前直流电源设备缺乏现场检测技术手段,对安全运行构成威胁。文章分析了直流电源现场检测的必要性,介绍一种移动式直流电源微机检测系统的开发与应用。关键词:直流电源;现场检测;开发应用 直流电源设备现场检测工作现状在DL/T 724-2000《电力系统用蓄电池直流电源装置运行与维护技术规程》第5.3条中,对充电装置的稳压精度、稳流精度、纹波系数3项技术指标(以下简称3项指标)的现场交接试验有明确的规定及技术要求。试验内容主要是通过调压装置(如变压器)将充电机交流输入电压在额定电压±10%内变化,通过负载调整装置(如放电电阻),使充电机的直流输出电压及输出电流在规定范围内变化(电压调整范围为额定值的90%~145%,电流调整范围为额定值的0~100%),在调整范围内测量电压、电流及纹波值,通过计算,得到充电机的稳压精度、稳流精度及纹波系数3个参数(以下简称3个参数)。
上传时间: 2013-11-11
上传用户:wuchunzhong
介绍了双反星形可控硅整流电路中的平衡电抗器及其在电路中所起的作用,即保证两组三相半波整流电路同时导电和电路输出电流的平衡,并例举了该电抗器在运行过程中发生的故障及处理事例。
上传时间: 2013-11-22
上传用户:来茴
工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。这种将物理量转换成电信号的设备称为变送器。工业上最广泛采用的是用4~20mA电流来传输模拟量。 采用电流信号的原因是不容易受干扰。并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。常取2mA作为断线报警值。
上传时间: 2013-11-08
上传用户:diets
提出一种用于光伏发电系统与公用电网并网的逆变器定频滞环电流控制新方法, 该方法首先基于电网线电压空间矢量将复平面分为6 个扇区, 在每个扇区内实现两相开关解耦分别控制相应的线电流; 然后, 在控制相的下一个线电流误差周期到来时, 计算并调节下一周期的滞环宽度以达到定频滞环电流跟踪, 改善输出电流波形, 提高控制精度。该方法的主要特点是不需要额外的模拟电路便可以实现开关频率的稳定。利用Matlab 进行建模, 仿真结果证明了该方法对稳定滞环开关频率是有效的, 同时也表明该方法应用于光伏并网逆变器是可行的。
上传时间: 2013-10-28
上传用户:123312
锂电池充电控制器MAX1811的引脚参数及电路 MAX1811是美信公司生产的USB接口单节锂电池充电控制器,它可以直接由USB端口供电,或由其他外部电源供电,电源电压可达+6.5V。 1 特性 MAX1811无须微处理器控制,最大充电电压可由引脚设置为4.1 V或4.2 V,最大误差为0.5%。 MAX1811对电池充电电流可通过逻辑控制电路置为100mA或500mA,符合USB的电流标准。MAX1811工作于线性模式,无须外部电感,内置的MOSFET功率开关有效节省了线路板尺寸。 当采用U部端口电源给电池充电时,对于低功率USB端口,应将MAX1811芯片的SETI端电位拉低,其充电电流设定为100mA,对于高功率的USB端口,应将MAX1811芯片的SETI引脚接高电平,此时充电电流设定为500mA;将5ETV端接高电平或接低电平,锂电池的充电电压分别被设置为4.2 V或4.1 V。MAX1811的CHG端允许芯片在充电期间点亮LED。
上传时间: 2013-10-31
上传用户:完玛才让
小电流接地选线装置的应用在我国10~35kV电网中,普遍采用中性点不接地或经消弧线圈接地的方式,这两种方式统称为小电流接地系统。小电流接地系统单相接地故障是电网最常见的故障之一,当发生单相接地故障时,虽然在高压侧发生了故障相电压降低和非故障相电压升高,引起中性点位移,但线电压仍然是对称的且故障电流小,对供电设备不致造成危害,用户仍可继续工作。但单相接地故障有可能发展成为两相接地短路故障或其他形式的故障,为保证设备及人员安全,应及时找出接地故障线路以便迅速处理。对于单相接地故障的检测,传统的方法是采用副二次绕组接成开口三角形的三相电压互感进行检测。为了寻找故障线路,值班员通常采取轮流拉闸的办法来确定具体的故障线路。这种方法,会给安全运行及用户的生产造成一定的影响,降低了用户的供电可靠性。随着微机技术的发展,出现了微机型的小电流接地选线装置,这种装置可以在不对线路拉闸停电的情况下找到故障线路,因此与传统检测方案相比有很大的优越性。
上传时间: 2013-12-18
上传用户:dddddd55
电路器件和电路本身的尺寸远小于工作于电路的电磁波的波长。电磁波通过电路的时间是瞬时的。整个实际电路可看作是电磁空间的一个点,可以用足够精确反映其电磁性质的一些理想电路元件或它们的组合来模拟实际元件。这种理想化的电路元件称为集中参数元件。可以认为,电磁能量的消耗都集中于电阻元件,电能只集中于电容元件,磁能只集中于电感元件。这些二端子的集中参数元件,其电磁性能可用端电流和端电压来描述,而端电流和端电压仅是时间的函数,与空间位置无关。
上传时间: 2013-10-12
上传用户:515414293
漏电保护器的工作原理:漏电保护器主要包括检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分。三相四线制供电系统的漏电保护器工作原理示意图。TA 为零序电流互感器,GF 为主开关,TL为主开关的分励脱扣器线圈。在被保护电路工作正常,没有发生漏电或触电的情况下,由克希荷夫定律可知,通过TA 一次侧的电流相量和等于零,即:这样TA 的二次侧不产生感应电动势,漏电保护器不动作,系统保持正常供电。当被保护电路发生漏电或有人触电时,由于漏电电流的存在,通过TA一次侧各相电流的相量和不再等于零,产生了漏电电流Ik。在铁心中出现了交变磁通。在交变磁通作用下,TL二次侧线圈就有感应电动势产生,此漏电信号经中间环节进行处理和比较,当达到预定值时,使主开关分励脱扣器线圈TL 通电,驱动主开关GF 自动跳闸,切断故障电路,从而实现保护。用于单相回路及三相三线制的漏电保护器的工作原理与此相同,不赘述。
上传时间: 2013-10-19
上传用户:zhangjinzj
在电学实验中,为了得到我们所需要的电压或电流,我们经常需要把滑线变阻器连接成分压或限流两种形式,对电源进行控制与调节。在实验应用中,如何根据实验条件和要求来正确选择滑线变阻器的参数(阻值,额定电流)是我们必须掌握的技能。参数选择合适,电压(电流)就能准确、稳定地调节,实验就能顺利进行。选择不当,实验条件就不稳定,使实验不能稳定进行,甚至损坏仪表。本实验对这两种的输出特性进行研究,以指导我们合理设计与选用控制电路。
上传时间: 2013-12-28
上传用户:guojin_0704
单相桥式逆变电路为例:S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。S1、S4闭合,S2、S3断开时,负载电压uo为正S1;S1、S4断开,S2、S3闭合时,uo为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。阻感负载时,io滞后于uo,波形也不同(图5-1b)。t1前:S1、S4通,uo和io均为正。t1时刻断开S1、S4,合上S2、S3,uo变负,但io不能立刻反向。io从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大 (2)换流方式分类换流——电流从一个支路向另一个支路转移的过程,也称换相。开通:适当的门极驱动信号就可使其开通。关断:全控型器件可通过门极关断。半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。研究换流方式主要是研究如何使器件关断。本章换流及换流方式问题最为全面集中,因此在本章讲述1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。
上传时间: 2013-10-15
上传用户:qingdou